/*==LICENSE==* CyanWorlds.com Engine - MMOG client, server and tools Copyright (C) 2011 Cyan Worlds, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . You can contact Cyan Worlds, Inc. by email legal@cyan.com or by snail mail at: Cyan Worlds, Inc. 14617 N Newport Hwy Mead, WA 99021 *==LICENSE==*/ #include "HeadSpin.h" #include "max.h" #include "meshdlib.h" #include "dummy.h" #include "resource.h" #include "plComponent.h" #include "plComponentReg.h" #include "../MaxMain/plPlasmaRefMsgs.h" #include "../MaxExport/plExportProgressBar.h" #include "../MaxMain/plMaxNode.h" #include "hsTypes.h" #include "hsBitVector.h" #include "../plMath/hsRadixSort.h" #include "../plMath/plRandom.h" #include "../pfAnimation/plBlower.h" #include "plDicer.h" #include "plDistribComponent.h" #include "../MaxConvert/plDistributor.h" #include "../MaxConvert/plDistTree.h" #include "plMiscComponents.h" #include "plClusterComponent.h" #include "../MaxConvert/plClusterUtil.h" #include "../plDrawable/plClusterGroup.h" #include "../plDrawable/plSpanTemplate.h" #include using namespace std; ///////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////// // Start with the component bookkeeping song and dance. // Actual working code follows. ///////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////// void DummyCodeIncludeFuncCluster() { } class plClusterComponentProc : public ParamMap2UserDlgProc { public: BOOL DlgProc(TimeValue t, IParamMap2 *map, HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam) { switch (msg) { case WM_COMMAND: if( (HIWORD(wParam) == BN_CLICKED) && (LOWORD(wParam) == IDC_CLUSTER_DO_THE_DANCE) ) { plClusterComponent* cc = (plClusterComponent*)map->GetParamBlock()->GetOwner(); cc->Cluster(nil); return TRUE; } if( (HIWORD(wParam) == BN_CLICKED) && (LOWORD(wParam) == IDC_CLUSTER_CLEAR) ) { plClusterComponent* cc = (plClusterComponent*)map->GetParamBlock()->GetOwner(); cc->Clear(); return TRUE; } break; } return false; } void DeleteThis() {} }; static plClusterComponentProc gClusterCompProc; //Max desc stuff necessary below. CLASS_DESC(plClusterComponent, gClusterCompDesc, "Cluster", "Cluster", COMP_TYPE_DISTRIBUTOR, CLUSTER_COMP_CID) class plClusterCompAccessor : public PBAccessor { public: void Set(PB2Value& v, ReferenceMaker* owner, ParamID id, int tabIndex, TimeValue t) { if( id == plClusterComponent::kWindBones ) { plClusterComponent *comp = (plClusterComponent*)owner; comp->NotifyDependents(FOREVER, PART_ALL, REFMSG_USER_COMP_REF_CHANGED); } } }; plClusterCompAccessor gClusterCompAccessor; ParamBlockDesc2 gClusterBk ( plComponent::kBlkComp, _T("Cluster"), 0, &gClusterCompDesc, P_AUTO_CONSTRUCT + P_AUTO_UI, plComponent::kRefComp, IDD_COMP_CLUSTER, IDS_COMP_CLUSTERS, 0, 0, &gClusterCompProc, plClusterComponent::kClusters, _T("Clusters"), TYPE_INODE_TAB, 0, 0, 0, end, plClusterComponent::kOptimization, _T("Optimization"), TYPE_FLOAT, 0, 0, p_default, 100.0, p_range, 0.0, 100.0, p_ui, TYPE_SPINNER, EDITTYPE_POS_FLOAT, IDC_COMP_CLUSTERSIZE, IDC_COMP_CLUSTERSIZE_SPIN, 1.0, end, plClusterComponent::kFadeIns, _T("FadeIns"), TYPE_POINT3_TAB, 0, 0, 0, end, plClusterComponent::kFadeOuts, _T("FadeOuts"), TYPE_POINT3_TAB, 0, 0, 0, end, // OBSOLETE plClusterComponent::kWindBone, _T("WindBone"), TYPE_INODE, 0, 0, // p_ui, TYPE_PICKNODEBUTTON, IDC_COMP_CLUSTER_WINDBONE, // p_prompt, IDS_COMP_CLUSTER_CHOSE_WINDBONE, end, plClusterComponent::kWindBones, _T("WindBones"), TYPE_INODE_TAB, 0, 0, 0, end, plClusterComponent::kAutoGen, _T("AutoGen"), TYPE_BOOL, 0, 0, p_default, FALSE, p_ui, TYPE_SINGLECHEKBOX, IDC_COMP_CLUST_AUTOEXPORT, end, plClusterComponent::kAutoInstance, _T("AutoInstance"), TYPE_BOOL, 0, 0, p_default, FALSE, p_ui, TYPE_SINGLECHEKBOX, IDC_COMP_CLUST_AUTOINSTANCE, end, end ); hsBool plClusterComponent::SetupProperties(plMaxNode *node, plErrorMsg *pErrMsg) { fSetupDone = false; fExported = false; int numClust = fCompPB->Count(kClusters); int i; for( i = numClust-1; i >= 0; --i ) { if( !fCompPB->GetINode(kClusters, TimeValue(0), i) ) fCompPB->Delete(kClusters, i, 1); } return true; } static int CompTemplNodes(const void *elem1, const void *elem2) { plDistribInstance* distA = (plDistribInstance*)elem1; plDistribInstance* distB = (plDistribInstance*)elem2; plMaxNode* a = (plMaxNode*)distA->fNode; plMaxNode* b = (plMaxNode*)distB->fNode; if( a == b ) return 0; if( a->GetRenderLevel(!a->GetNoDeferDraw()) < b->GetRenderLevel(!b->GetNoDeferDraw()) ) return -1; if( a->GetRenderLevel(!a->GetNoDeferDraw()) > b->GetRenderLevel(!b->GetNoDeferDraw()) ) return 1; if( a < b ) return -1; return 1; } hsBool plClusterComponent::PreConvert(plMaxNode *node, plErrorMsg *pErrMsg) { if( !fSetupDone ) { int numClust = fCompPB->Count(kClusters); int i; for( i = 0; i < numClust; i++ ) { plMaxNodeBase* clust = (plMaxNodeBase*)fCompPB->GetINode(kClusters, TimeValue(0), i); if( clust ) { Box3 fade(fCompPB->GetPoint3(kFadeIns, TimeValue(0), i), fCompPB->GetPoint3(kFadeOuts, TimeValue(0), i)); // Deal here is that, although we'd love to properly sort all the time, most of the time we don't // need to and/or can't afford it, at least with the closeup dense plants. This is a sort of hacky // way to guess whether we can afford a proper sort. The idea is that anything that is only visible // from farther than N feet away is probably some cheap imposter kind of representation that we can // afford to face sort (it's likely to be two sided convex objects too, which means it'll need the sort). // Can we do better? Not tonight. const float kMinDistantFadeIn = 70.f; const float kMaxDistantFadeOut = 10.f; BOOL faceSort = false; if( fade.Min()[2] < 0 ) { if( fade.Min()[0] > kMinDistantFadeIn ) faceSort = true; } else if( fade.Max()[2] > 0 ) { if( fade.Max()[1] < kMaxDistantFadeOut ) faceSort = true; } if( faceSort ) faceSort = true; clust->SetFade(fade); clust->SetNoDeferDraw(true); clust->SetNoFaceSort(!faceSort); clust->SetNormalChan(plDistributor::kNormMapChan); if( i < fCompPB->Count(kWindBones) ) { plMaxNodeBase* windBone = (plMaxNodeBase*)fCompPB->GetINode(kWindBones, TimeValue(0), i); // FISHHACK // BoneUpdate // Add clust as first bone, windBone as second. if( windBone && (windBone != clust) ) clust->AddBone(windBone); } } } ISetupRenderDependencies(); fClusterGroups.clear(); if (fCompPB->GetInt(kAutoInstance)) { hsBitVector doneBits; IBuildDistribTab(); if( !fDistribTab.Count() ) { fSetupDone = true; return true; } plDistribInstTab nodes; plExportProgressBar bar; if( IBuildNodeTab(nodes, pErrMsg, bar) ) { nodes.Sort(CompTemplNodes); plClusterUtil util; int i = 0; while( i < nodes.Count() ) { plMaxNode* repNode = (plMaxNode*)nodes[i].fNode; int nextNode; for( nextNode = i+1; (nextNode < nodes.Count()) && (nodes[i].fNode == nodes[nextNode].fNode); nextNode++ ) {} // intentional, we just want the i value // As far as I can tell, we don't actually use the templates generated here, we just use the count // to know how many groups to create, and then generate the templates again in Convert(). // Looks like a hack that never got cleaned up. plSpanTemplTab templs = util.MakeTemplates(repNode); int j; for( j = 0; j < templs.Count(); j++ ) { fClusterGroups.push_back(util.CreateGroup(repNode, GetINode()->GetName())); delete templs[j]; } i = nextNode; } } IClearNodeTab(); IClearDistribTab(); } fSetupDone = true; } return true; } hsBool plClusterComponent::Convert(plMaxNode *node, plErrorMsg *pErrMsg) { if( !fExported && (fCompPB->GetInt(kAutoInstance)) ) { hsBitVector doneBits; IBuildDistribTab(); if( !fDistribTab.Count() ) { fExported = true; return true; } plDistribInstTab nodes; plExportProgressBar bar; if( IBuildNodeTab(nodes, pErrMsg, bar) ) { nodes.Sort(CompTemplNodes); plClusterUtil util; plDeformVert defVert; plShadeVert shadeVert; int groupIdx = 0; int i = 0; while( i < nodes.Count() ) { plL2WTab l2wTab; plMaxNode* repNode = (plMaxNode*)nodes[i].fNode; Matrix3 l2w = nodes[i].fObjectTM; l2wTab.Append(1, &l2w); int nextNode; for( nextNode = i+1; (nextNode < nodes.Count()) && (nodes[i].fNode == nodes[nextNode].fNode); nextNode++ ) { l2wTab.Append(1, &nodes[nextNode].fObjectTM); } plSpanTemplTab templs = util.MakeTemplates(repNode); int j; for( j = 0; j < templs.Count(); j++ ) { util.SetupGroup(fClusterGroups[groupIdx], repNode, templs[j]); groupIdx++; util.AddClusters(l2wTab, nil, nil); } i = nextNode; } } IClearNodeTab(); IClearDistribTab(); fExported = true; } return true; } plClusterComponent::plClusterComponent() { fClassDesc = &gClusterCompDesc; fClassDesc->MakeAutoParamBlocks(this); fClusterBins = nil; fSizes[0] = fSizes[1] = fSizes[2] = 0; fAutoGen = FALSE; } void plClusterComponent::ICheckWindBone() { } ///////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////// // Working end of the gun follows below this line. ///////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////// BOOL plClusterComponent::AutoGen(plErrorMsg* pErrMsg) { if( !fCompPB->Count(kClusters) && fCompPB->GetInt(kAutoGen) ) { fAutoGen = true; return Cluster(pErrMsg); } return false; } void plClusterComponent::AutoClear(plErrorMsg* pErrMsg) { if( fAutoGen ) { Clear(); fAutoGen = false; } } void plClusterComponent::IBuildDistribTab() { plDistribCompTab& tab = fDistribTab; tab.ZeroCount(); // Okay, laziest hackiest sort algorithm in the world follows. // But it's okay, the number of distributors is small. plDistribCompTab sortTab; Tab valTab; // For each target int numTarg = NumTargets(); int i; for( i = 0; i < numTarg; i++ ) { plMaxNodeBase* targ = GetTarget(i); if( targ ) { UInt32 count = targ->NumAttachedComponents(); int j; for( j = 0; j < count; j++ ) // For each DistribComponent { plComponentBase *comp = targ->GetAttachedComponent(j); if( comp && (comp->ClassID() == DISTRIBUTOR_COMP_CID) ) { // Add DistribComponent replicants to nodeTab // making sure we don't add any nodes twice. plDistribComponent* distComp = (plDistribComponent*)comp; int k; for( k = 0; k < sortTab.Count(); k++ ) { if( distComp == sortTab[k] ) break; } if( k == sortTab.Count() ) { sortTab.Append(1, &distComp); float val = distComp->GetIsoPriority(); valTab.Append(1, &val); } } } } } BitArray gotten(sortTab.Count()); while( tab.Count() < sortTab.Count() ) { float maxVal = -1.f; int maxIdx = -1; for( i = 0; i < sortTab.Count(); i++ ) { if( !gotten[i] ) { if( valTab[i] > maxVal ) { maxVal = valTab[i]; maxIdx = i; } } } gotten.Set(maxIdx); tab.Append(1, &sortTab[maxIdx]); } } void plClusterComponent::IClearDistribTab() { int i; for( i = 0; i < fDistribTab.Count(); i++ ) fDistribTab[i]->Done(); fDistribTab.ZeroCount(); } BOOL plClusterComponent::IsFlexible() const { int i; for( i = 0; i < fDistribTab.Count(); i++ ) { if( fDistribTab[i]->IsFlexible() ) return true; } return false; } BOOL plClusterComponent::IBuildNodeTab(plDistribInstTab& nodes, plErrorMsg* pErrMsg, plExportProgressBar& bar) { plDistTree distTree; nodes.ZeroCount(); int numDistrib = fDistribTab.Count(); if( numDistrib ) { int progCnt = 0; int i; for( i = 0; i < numDistrib; i++ ) progCnt += fDistribTab[i]->NumTargets(); if( !progCnt ) progCnt = 1; bar.Start("Compiling", progCnt << 4); if( bar.Update(nil, 0) ) return false; for( i = 0; i < numDistrib; i++ ) { plDistribInstTab reps; if( !fDistribTab[i]->Distribute(reps, pErrMsg, bar, &distTree) ) return false; if( reps.Count() ) nodes.Append(reps.Count(), &reps[0]); } } return true; } void plClusterComponent::IClearNodeTab() { int i; for( i = 0; i < fDistribTab.Count(); i++ ) fDistribTab[i]->Done(); } void plClusterComponent::Select() { INodeTab nodeTab; int numClust = fCompPB->Count(kClusters); int i; for( i = 0; i < numClust; i++ ) { INode* clust = fCompPB->GetINode(kClusters, TimeValue(0), i); if( clust ) { nodeTab.Append(1, &clust); } } GetCOREInterface()->RemoveNamedSelSet(TSTR(GetINode()->GetName())); GetCOREInterface()->AddNewNamedSelSet(nodeTab, TSTR(GetINode()->GetName())); } void plClusterComponent::Clear() { int numClust = fCompPB->Count(kClusters); if( !numClust ) return; GetCOREInterface()->DisableSceneRedraw(); plExportProgressBar bar; const int log2freq = 2; const int maskfreq = (1 << log2freq)-1; int totalSteps = numClust >> log2freq; if( !totalSteps ) totalSteps = 1; bar.Start("Deleting", totalSteps); bar.Update(nil, 0); int i; for( i = 0; i < numClust; i++ ) { plMaxNode* cluster = (plMaxNode*)fCompPB->GetINode(kClusters, TimeValue(0), i); if( cluster ) { // HACK FISH - till we get a real fix for the slowdown caused by // deleting things with a location component on them. int numComp = cluster->NumAttachedComponents(); int j; for( j = numComp-1; j >= 0; --j ) { plComponentBase* comp = cluster->GetAttachedComponent(j); if( comp ) { comp->DeleteTarget(cluster); } } // END HACK FISH cluster->Delete(TimeValue(0), true); } if( !(i & maskfreq) ) bar.Update(nil); } fCompPB->ZeroCount(kClusters); fCompPB->ZeroCount(kFadeIns); fCompPB->ZeroCount(kFadeOuts); fCompPB->ZeroCount(kWindBones); GetCOREInterface()->EnableSceneRedraw(); GetCOREInterface()->ForceCompleteRedraw(FALSE); } BOOL plClusterComponent::Cluster(plErrorMsg* pErrMsg) { GetCOREInterface()->RedrawViews(GetCOREInterface()->GetTime(), REDRAW_BEGIN); Clear(); IGetLocation(); ICheckWindBone(); // fClusterSize = fCompPB->GetFloat(kClusterSize); // fClusterSize = 75.f; plExportProgressBar bar; IBuildDistribTab(); INodeTab doneNodes; plBox3Tab fade; INodeTab bone; hsBitVector boneIsParent; hsBitVector doneBits; plDistribInstTab nodes; BOOL failed = true; if( IBuildNodeTab(nodes, pErrMsg, bar) ) { failed = false; if( nodes.Count() ) { bar.Start("Optimizing", nodes.Count()); bar.Update(nil, 0); } int i; for( i = 0; i < nodes.Count(); i++ ) { if( doneBits.IsBitSet(i) ) continue; if( !nodes[i].fNode ) continue; if( !ICanCluster(nodes[i]) ) continue; plDistribInstTab shared; shared.Append(1, &nodes[i]); int j; for( j = 0; j < nodes.Count(); j++ ) { if( !doneBits.IsBitSet(j) && ICanCluster(nodes[i], nodes[j]) ) { shared.Append(1, &nodes[j]); doneBits.SetBit(j); } } INodeTab cluster; failed = !IClusterGroup(shared, cluster, bar); if( cluster.Count() ) { int j; for( j = 0; j < cluster.Count(); j++ ) { fade.Append(1, &shared[0].fFade); bone.Append(1, &shared[0].fBone); boneIsParent.SetBit(doneNodes.Count() + j, shared[0].fRigid); // Attach every component on the template node to the new node int k; plMaxNode *maxNode = (plMaxNode*)nodes[i].fNode; for (k = 0; k < maxNode->NumAttachedComponents(); k++) { plComponentBase *comp = maxNode->GetAttachedComponent(k); comp->AddTarget((plMaxNode*)cluster[j]); } } doneNodes.Append(cluster.Count(), &cluster[0]); } if( failed ) break; } } IClearNodeTab(); IClearDistribTab(); IFinishDoneNodes(doneNodes, fade, bone, boneIsParent); if( failed ) Clear(); else Select(); GetCOREInterface()->RedrawViews(GetCOREInterface()->GetTime(), REDRAW_END); return failed; } void plClusterComponent::IFinishDoneNodes(INodeTab& doneNodes, plBox3Tab& fade, INodeTab& bones, hsBitVector& boneIsParent) { if( !doneNodes.Count() ) return; NameMaker *nn = GetCOREInterface()->NewNameMaker(); TSTR nodeName(GetINode()->GetName()); int i; for( i = 0; i < doneNodes.Count(); i++ ) { if( doneNodes[i] ) { nn->MakeUniqueName(nodeName); doneNodes[i]->SetName(nodeName); ISetLocation((plMaxNode*)doneNodes[i]); } Point3* p3p; p3p = &fade[i].pmin; fCompPB->Append(kFadeIns, 1, &p3p); p3p = &fade[i].pmax; fCompPB->Append(kFadeOuts, 1, &p3p); INode* nilNode = nil; if( bones[i] ) { if( boneIsParent.IsBitSet(i) ) { bones[i]->AttachChild(doneNodes[i], true); fCompPB->Append(kWindBones, 1, &nilNode); } else { fCompPB->Append(kWindBones, 1, &bones[i]); } } else { fCompPB->Append(kWindBones, 1, &nilNode); } } // Add doneNodes to our PB, so we can keep track of who we've created. fCompPB->Append(kClusters, doneNodes.Count(), &doneNodes[0]); } void plClusterComponent::ISetupRenderDependencies() { hsRadixSort::Elem* listTrav; hsTArray scratchList; int numClust = fCompPB->Count(kClusters); if( !numClust ) return; scratchList.SetCount(numClust); int i; for( i = 0; i < numClust; i++ ) { listTrav = &scratchList[i]; listTrav->fBody = (void*)i; listTrav->fNext = listTrav+1; Point3 fadeMax = fCompPB->GetPoint3(kFadeOuts, TimeValue(0), i); listTrav->fKey.fFloat = fadeMax[2] > 0 ? -fadeMax[0] : -1.e33f; // Negate the distance to get decreasing sort. } listTrav->fNext = nil; hsRadixSort rad; hsRadixSort::Elem* sortedList = rad.Sort(scratchList.AcquireArray(), hsRadixSort::kFloat); hsRadixSort::Elem* prevStart = nil; hsRadixSort::Elem* prevEnd = nil; listTrav = sortedList; float currFade = listTrav->fKey.fFloat; listTrav = listTrav->fNext; while( listTrav ) { if( listTrav->fKey.fFloat != currFade ) { IAssignRenderDependencies(prevStart, prevEnd, sortedList, listTrav); currFade = listTrav->fKey.fFloat; } listTrav = listTrav->fNext; } IAssignRenderDependencies(prevStart, prevEnd, sortedList, listTrav); // Sort them by fade.Min()[2] < 0 ? fade.Min()[0] : 0 in decreasing order // make first sort value group render dependent on all targets // for each remaining sort value group // make render dependent on members of previous sort value group. } void plClusterComponent::IAssignRenderDependencies(hsRadixSortElem*& prevStart, hsRadixSortElem*& prevEnd, hsRadixSortElem*& currStart, hsRadixSortElem*& currEnd) { if( !prevStart ) { hsRadixSort::Elem* q; for( q = currStart; q != currEnd; q = q->fNext ) { int iNode = (int)q->fBody; plMaxNodeBase* clust = (plMaxNodeBase*)fCompPB->GetINode(kClusters, TimeValue(0), iNode); if( clust ) { int i; for( i = 0; i < NumTargets(); i++ ) { plMaxNodeBase* targ = GetTarget(i); if( targ ) clust->AddRenderDependency(targ); } } } } else { hsRadixSort::Elem* q; for( q = currStart; q != currEnd; q = q->fNext ) { int iNode = (int)q->fBody; plMaxNodeBase* clust = (plMaxNodeBase*)fCompPB->GetINode(kClusters, TimeValue(0), iNode); if( clust ) { #if 0 hsRadixSort::Elem* p; for( p = prevStart; p != prevEnd; p = p->fNext ) { iNode = (int)p->fBody; plMaxNodeBase* targ = (plMaxNodeBase*)fCompPB->GetINode(kClusters, TimeValue(0), iNode); clust->AddRenderDependency(targ); } #else iNode = (int)prevStart->fBody; plMaxNodeBase* targ = (plMaxNodeBase*)fCompPB->GetINode(kClusters, TimeValue(0), iNode); clust->AddRenderDependency(targ); #endif } } } prevStart = currStart; prevEnd = currEnd; currStart = currEnd; } BOOL plClusterComponent::ICanCluster(plDistribInstance& node) { if( !node.fNode ) return false; return true; } BOOL plClusterComponent::ICanCluster(plDistribInstance& node0, plDistribInstance& node1) { if( !(node0.fNode && node1.fNode) ) return false; if( !ICanCluster(node1) ) return false; if( node0.fNode->GetMtl() != node1.fNode->GetMtl() ) return false; if( (node0.fFade.Min() != node1.fFade.Min()) ||(node0.fFade.Max() != node1.fFade.Max()) ) return false; if( node0.fBone != node1.fBone ) return false; return true; } Box3 plClusterComponent::IPartition(plDistribInstTab& nodes) { if( !nodes.Count() ) return Box3(); Box3 retVal; int i; for( i = 0; i < nodes.Count(); i++ ) { retVal += nodes[i].fNodeTM.GetTrans(); } Point3 mins = retVal.Min(); Point3 maxs = retVal.Max(); // mins += Point3(fClusterSize, fClusterSize, fClusterSize) * 0.5f; // maxs -= Point3(fClusterSize, fClusterSize, fClusterSize) * 1.5f; // maxs -= Point3(fClusterSize, fClusterSize, fClusterSize) * 1.0f; for( i = 0; i < 3; i++ ) { if( mins[i] >= maxs[i] ) { float mid = (mins[i] + maxs[i]) * 0.5f; mins[i] = mid - 1.f; maxs[i] = mid + 1.f; } } retVal = Box3(mins, maxs); return retVal; } void plClusterComponent::IClusterBins(plDistribInstTab& nodes, Box3& box) { int i; for( i = 0; i < 3; i++ ) { fSizes[i] = int((box.Max()[i] - box.Min()[i]) / fClusterSize); if( !fSizes[i] ) fSizes[i] = 1; } int totSize = IGetBinCount(); fClusterBins = TRACKED_NEW plDistribInstTab*[totSize]; memset(fClusterBins, 0, sizeof(*fClusterBins) * totSize); for( i = 0; i < nodes.Count(); i++ ) { Matrix3 l2w = nodes[i].fNodeTM; Point3 loc = l2w.GetTrans(); plDistribInstTab* bin = IGetClusterBin(box, loc); bin->Append(1, &nodes[i]); } } int plClusterComponent::IGetBinCount() { return fSizes[0] * fSizes[1] * fSizes[2]; } void plClusterComponent::IDeleteClusterBins() { int totSize = IGetBinCount(); int i; for( i = 0; i < totSize; i++ ) delete fClusterBins[i]; delete [] fClusterBins; fClusterBins = nil; } plDistribInstTab* plClusterComponent::IGetClusterBin(const Box3& box, const Point3& loc) { int coord[3]; int j; for( j = 0; j < 3; j++ ) { coord[j] = int((loc[j] - box.Min()[j]) / fClusterSize); if( coord[j] < 0 ) coord[j] = 0; else if( coord[j] >= fSizes[j] ) coord[j] = fSizes[j] - 1; } int idx = coord[0] * fSizes[1] * fSizes[2] + coord[1] * fSizes[2] + coord[2]; if( !fClusterBins[idx] ) fClusterBins[idx] = TRACKED_NEW plDistribInstTab; return fClusterBins[idx]; } BOOL plClusterComponent::IClusterGroup(plDistribInstTab& nodes, INodeTab& clusters, plExportProgressBar& bar) { BOOL retVal = true; hsBitVector doneNodes; const float kNoOptClusterSize = 100.f; const float kOptClusterSize = 100.f; // 30.f? const int kNoOptMaxFaces = 10000; const int kOptMaxFaces = 200; float optim = fCompPB->GetFloat(kOptimization) * 0.01f; float minClusterSize = kNoOptClusterSize + optim * (kOptClusterSize - kNoOptClusterSize); int maxFaces = kNoOptMaxFaces + int(optim * float(kOptMaxFaces - kNoOptMaxFaces)); fClusterSize = minClusterSize; Box3 fade = nodes[0].fFade; if( fade.Min().z < 0 ) { fClusterSize = fade.Min().x; } else if( fade.Max().z < 0 ) { fClusterSize = fade.Max().x; } if( fClusterSize < minClusterSize ) fClusterSize = minClusterSize; Box3 box = IPartition(nodes); IClusterBins(nodes, box); int totSize = IGetBinCount(); int i; for( i = 0; i < totSize; i++ ) { if( fClusterBins[i] ) { INode* grp = IMakeOne(*fClusterBins[i]); if( grp ) { INodeTab subGrp; plDicer dicer; dicer.SetMaxFaces(maxFaces); dicer.Dice(grp, subGrp); int j; for( j = 0; j < subGrp.Count(); j++ ) { clusters.Append(1, &subGrp[j]); } } if( bar.Update(nil, fClusterBins[i]->Count()) ) { retVal = false; break; } } } IDeleteClusterBins(); return retVal; } INode* plClusterComponent::IMakeOne(plDistribInstTab& nodes) { if( !nodes.Count() ) return nil; TriObject* triObj = CreateNewTriObject(); Mesh* outMesh = &triObj->mesh; *outMesh = *nodes[0].fMesh; INode *outNode = GetCOREInterface()->CreateObjectNode(triObj); Matrix3 l2w = nodes[0].fObjectTM; Matrix3 w2l = Inverse(l2w); MeshDelta meshDelta(*outMesh); int i; for( i = 1; i < nodes.Count(); i++ ) { Mesh nextMesh(*nodes[i].fMesh); Matrix3 relativeTransform = nodes[i].fObjectTM * w2l; // If we've stashed normals on this mesh, they are in the mesh's // native local space. The transform of the positions is handled // automatically by meshDelta.AttachMesh (hence passing in the matrix), // but the meshDelta hasn't a clue that the normal map channel isn't // just more UVs. No problem, I'll handle it myself. if( nextMesh.mapVerts(plDistributor::kNormMapChan) ) { Point3* norms = nextMesh.mapVerts(plDistributor::kNormMapChan); int k; for( k = 0; k < nextMesh.getNumMapVerts(plDistributor::kNormMapChan); k++ ) { norms[k] = relativeTransform.VectorTransform(norms[k]); } } IRandomizeSkinWeights(&nextMesh, nodes[i].fFlex); meshDelta.AttachMesh(*outMesh, nextMesh, relativeTransform, 0); meshDelta.Apply(*outMesh); } outNode->SetNodeTM(TimeValue(0), l2w); outNode->CopyProperties(nodes[0].fNode); outNode->SetMtl(nodes[0].fNode->GetMtl()); outNode->SetObjOffsetPos(Point3(0,0,0)); Quat identQuat; identQuat.Identity(); outNode->SetObjOffsetRot(identQuat); outNode->SetObjOffsetScale(ScaleValue(Point3(1.f, 1.f, 1.f))); outNode->Hide(false); return outNode; } BOOL plClusterComponent::IGetLocation() { fLocationComp = nil; int numTarg = NumTargets(); int i; for( i = 0; i < numTarg; i++ ) { plMaxNodeBase* targ = GetTarget(i); if( targ ) { UInt32 numComp = targ->NumAttachedComponents(false); int j; for( j = 0; j < numComp; j++ ) { plComponentBase* comp = targ->GetAttachedComponent(j, false); if( comp && (comp->ClassID() == ROOM_CID || comp->ClassID() == PAGEINFO_CID) ) { if( fLocationComp && (fLocationComp != comp) ) { fLocationComp = nil; return false; } fLocationComp = comp; } } } } return fLocationComp != nil; } void plClusterComponent::ISetLocation(plMaxNode* node) { if( fLocationComp ) fLocationComp->AddTarget(node); } void plClusterComponent::IRandomizeSkinWeights(Mesh* mesh, const Point3& flex) const { const int iWgtMap = plDistributor::kWgtMapChan; UVVert *wgtMap = mesh->mapVerts(iWgtMap); int numWgtVerts = mesh->getNumMapVerts(iWgtMap); static plRandom random; float interMeshRandomNess = flex[1]; float intraMeshRandomNess = flex[2]; float r = interMeshRandomNess > 0 ? random.RandRangeF(1.f - interMeshRandomNess, 1.f) : 1.f; int i; for( i = 0; i < numWgtVerts; i++ ) { UVVert uvw = wgtMap[i]; float s = r; if( intraMeshRandomNess > 0 ) s *= random.RandRangeF(1.f - intraMeshRandomNess, 1.f); uvw *= s; mesh->setMapVert(iWgtMap, i, uvw); } }