/*==LICENSE==* CyanWorlds.com Engine - MMOG client, server and tools Copyright (C) 2011 Cyan Worlds, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . Additional permissions under GNU GPL version 3 section 7 If you modify this Program, or any covered work, by linking or combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK, NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK (or a modified version of those libraries), containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA, PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the licensors of this Program grant you additional permission to convey the resulting work. Corresponding Source for a non-source form of such a combination shall include the source code for the parts of OpenSSL and IJG JPEG Library used as well as that of the covered work. You can contact Cyan Worlds, Inc. by email legal@cyan.com or by snail mail at: Cyan Worlds, Inc. 14617 N Newport Hwy Mead, WA 99021 *==LICENSE==*/ #include "HeadSpin.h" #pragma hdrstop #include "hsBounds.h" #include "hsStream.h" #include "hsFastMath.h" const float hsBounds::kRealSmall = 1.0e-5f; /////////////////////////////////////////////////////////////////////////////////////// // // hsBounds // ///////////////////////////////////////////////////////////////////////////////////////// void hsBounds::Read(hsStream *s) { fType =(hsBoundsType) s->ReadLE32(); } void hsBounds::Write(hsStream *s) { s->WriteLE32((int32_t)fType); } /////////////////////////////////////////////////////////////////////////////////////// // // hsBounds3 // ///////////////////////////////////////////////////////////////////////////////////////// void hsBounds3::Transform(const hsMatrix44 *mat) { #if 0 // IDENT if( mat->fFlags & hsMatrix44::kIsIdent ) return; #endif // IDENT hsAssert(fType != kBoundsUninitialized, "Can't transform an unitialized bound"); if(fType == kBoundsNormal) { hsPoint3 corners[8]; this->GetCorners(corners); mat->MapPoints(8, corners); this->Reset(8,corners); fBounds3Flags &= ~kCenterValid; } } void hsBounds3::Reset(const hsPoint3 *p) { fType = kBoundsNormal; fMins = fMaxs = *p; fBounds3Flags |= kCenterValid; fCenter = *p; } void hsBounds3::Reset(const hsBounds3 *b) { if( kBoundsNormal == b->fType ) { fType = kBoundsNormal; fMins = b->fMins; fMaxs = b->fMaxs; if( b->fBounds3Flags & kCenterValid ) { fBounds3Flags |= kCenterValid; fCenter = b->fCenter; } else fBounds3Flags &= ~kCenterValid; } else fType = b->fType; } void hsBounds3::Reset(int n, const hsPoint3 *p) { fType = kBoundsNormal; fMins = fMaxs = *p; for(int i = 1; i < n ; i++) this->Union(&p[i]); fBounds3Flags &= ~kCenterValid; } void hsBounds3::Union(const hsPoint3 *p) { if(fType == kBoundsNormal) // Add this point if bounds is normal { for (int i = 0; i < 3; i++) { if ((*p)[i] > fMaxs[i]) fMaxs[i] =(*p)[i]; else if ((*p)[i] < fMins[i]) fMins[i] =(*p)[i]; } fBounds3Flags &= ~kCenterValid; } else { if(fType != kBoundsFull) // Otherwise re-init unless bounds is full already this->Reset(p); } } void hsBounds3::Union(const hsVector3 *v) { if(fType == kBoundsNormal) // Add this point if bounds is normal { for (int i = 0; i < 3; i++) { if( (*v)[i] > 0 ) fMaxs[i] += (*v)[i]; else fMins[i] += (*v)[i]; } fBounds3Flags &= ~kCenterValid; } } void hsBounds3::Union(const hsBounds3 *p) { if(fType == kBoundsNormal && p->GetType() == kBoundsNormal) // Add this point if bounds is normal { for (int i = 0; i < 3; i++) { if (p->fMaxs[i] > fMaxs[i]) fMaxs[i] = p->fMaxs[i]; if (p->fMins[i] < fMins[i]) fMins[i] = p->fMins[i]; } fBounds3Flags &= ~kCenterValid; } else if(fType == kBoundsEmpty || fType == kBoundsUninitialized) { *this = *p; } // If fType is kBoundsFull don't do anything } void hsBounds3::MakeSymmetric(const hsPoint3* p) { if( fType != kBoundsNormal ) return; float delMax = 0; int i; for( i = 0; i < 3; i++ ) { float delUp; delUp = fMaxs[i] - (*p)[i]; delMax = std::max(delMax, delUp); delUp = (*p)[i] - fMins[i]; delMax = std::max(delMax, delUp); } const float sqrtTwo = 1.41421f; delMax *= sqrtTwo; hsAssert((delMax > -1.e6f)&&(delMax < 1.e6f), "MakeSymmetric going out to sea"); fCenter = *p; fMaxs.Set(delMax, delMax, delMax); fMaxs += fCenter; fMins.Set(-delMax, -delMax, -delMax); fMins += fCenter; fBounds3Flags |= kCenterValid; } void hsBounds3::InscribeSphere() { if( fType != kBoundsNormal ) return; const float ooSix = hsInvert(2.f * 3.f); float a = GetMaxDim() * ooSix; hsPoint3 p = GetCenter(); p.fX += a; p.fY += a; p.fZ += a; fMaxs = p; a *= -2.f; p.fX += a; p.fY += a; p.fZ += a; fMins = p; // Center still valid, type still normal } // neg, pos, zero == disjoint, I contain other, overlap int32_t hsBounds3::TestBound(const hsBounds3& other) const { int32_t retVal = 1; int i; for( i = 0; i < 3; i++ ) { if( GetMins()[i] > other.GetMaxs()[i] ) return -1; if( GetMaxs()[i] < other.GetMins()[i] ) return -1; if( GetMaxs()[i] < other.GetMaxs()[i] ) retVal = 0; if( GetMins()[i] > other.GetMins()[i] ) retVal = 0; } return retVal; } bool hsBounds3::IsInside(const hsPoint3* pos) const { hsAssert(fType != kBoundsUninitialized, "Invalid bounds type for hsBounds3::IsInside() "); if(fType == kBoundsEmpty) return false; if(fType == kBoundsFull) return true; return !(pos->fX>fMaxs.fX || pos->fY>fMaxs.fY || pos->fZ>fMaxs.fZ || pos->fXfYfZAllocatePointers(nFaces /*faces*/, nPts /*pts*/, 0 /*uvs*/, 0 /*colors*/); tMesh->SetNumTriVertex(nPts); int iCenter = nPts - 3; int iNorthPole = nPts - 2; int iSouthPole = nPts - 1; hsPoint3 pt; pt = center; tMesh->SetPoint(iCenter, &pt); pt.fZ += radius; tMesh->SetPoint(iNorthPole, &pt); pt.fZ -= 2.f * radius; tMesh->SetPoint(iSouthPole, &pt); int i, j; for( i = 0; i < nLong; i++ ) { for( j = 0; j < nLati; j++ ) { float theta = (float(i) / nLong) * 2.f * M_PI; float cosTheta = cos(theta); float sinTheta = sin(theta); float phi = (float(j+1) / (nLati+1)) * M_PI; float cosPhi = cos(phi); float sinPhi = sin(phi); pt.fX = center.fX + radius * sinPhi * cosTheta; pt.fY = center.fY + radius * sinPhi * sinTheta; pt.fZ = center.fZ + radius * cosPhi; tMesh->SetPoint(j + i * nLati, &pt); } } hsTriangle3* tri; int nTris = 0; int iNext; for( i = 0; i < nLong; i++ ) { if( (iNext = i + 1) >= nLong ) iNext = 0; tri = tMesh->GetTriFromPool(nTris); tri->Zero(); tri->fFlags |= hsTriangle3::kTwoSided; tMesh->SetTriangle(nTris++, tri); tri->SetQuickMeshVerts(i * nLati, iNext * nLati, iNorthPole); tri = tMesh->GetTriFromPool(i); tri->Zero(); tri->fFlags |= hsTriangle3::kTwoSided; tMesh->SetTriangle(nTris++, tri); tri->SetQuickMeshVerts(nLati-1 + iNext * nLati, nLati-1 + i * nLati, iSouthPole); int jNext; for( j = 0; j < nLati-1; j++ ) { jNext = j + 1; tri = tMesh->GetTriFromPool(nTris); tri->Zero(); tri->fFlags |= hsTriangle3::kTwoSided; tMesh->SetTriangle(nTris++, tri); tri->SetQuickMeshVerts(j + i * nLati, j + iNext * nLati, jNext + i * nLati); tri = tMesh->GetTriFromPool(nTris); tri->Zero(); tri->fFlags |= hsTriangle3::kTwoSided; tMesh->SetTriangle(nTris++, tri); tri->SetQuickMeshVerts(jNext + iNext * nLati, jNext + i * nLati, j + iNext * nLati); } } } // // Allocate and create mesh from bounding box // void hsBounds3::MakeTriMesh(hsGTriMesh* tMesh, uint32_t triFlags, hsPoint3* cornersIn) const { hsAssert(cornersIn || fType == kBoundsNormal, "Invalid bounds type for hsBounds3::MakeTriMesh "); const int maxNew= 12; // Setup tMesh tMesh->AllocatePointers(maxNew /*faces*/, 8 /*pts*/, 0 /*uvs*/, 0 /*colors*/); tMesh->SetNumTriVertex(8); int i; hsPoint3 corners[8]; // Set Points if( !cornersIn ) { GetCorners(corners); cornersIn = corners; } for(i=0; i<8; i++) { tMesh->SetPoint(i, &cornersIn[i]); } tMesh->GetVertexPool()->SetCount(8); // Set faces hsTriangle3 *tri; int triNum=0; static int verts[maxNew * 3] = { /* -Y */ 6,2,3, /* -Y */ 6,3,7, /* Y */ 5,1,0, /* Y */ 5,0,4, /* -X */ 7,3,1, /* -X */ 7,1,5, /* X */ 4,0,2, /* X */ 4,2,6, /* Z */ 3,0,1, /* Z */ 3,2,0, /* -Z */ 7,4,6, /* -Z */ 7,5,4 }; int v=0; for (;triNum < maxNew;triNum++) { tri = tMesh->GetTriFromPool(triNum); tri->Zero(); tri->fFlags |= triFlags; tMesh->SetTriangle(triNum, tri); tri->SetQuickMeshVerts(verts[v + 0],verts[v + 1],verts[v + 2]); v += 3; } tMesh->SetTrianglePointers(); } #endif // MESH_GEN_DEFER void hsBounds3::TestPlane(const hsPlane3 *p, hsPoint2 &depth) const { TestPlane(p->fN, depth); } void hsBounds3::TestPlane(const hsVector3 &n, hsPoint2 &depth) const { hsAssert(fType == kBoundsNormal, "TestPlane only valid for kBoundsNormal filled bounds"); float dmax = fMins.InnerProduct(n); float dmin = dmax; int i; for( i = 0; i < 3; i++ ) { float dd; dd = fMaxs[i] - fMins[i]; dd *= n[i]; if( dd < 0 ) dmin += dd; else dmax += dd; } depth.fX = dmin; depth.fY = dmax; } float hsBounds3::ClosestPointToLine(const hsPoint3 *p, const hsPoint3 *v0, const hsPoint3 *v1, hsPoint3 *out) { hsVector3 del(v1, v0); float magSq = del.MagnitudeSquared(); float t = 0.f; if( magSq < hsBounds::kRealSmall ) { *out = *v0; } else { t = del.InnerProduct(hsVector3(p, v0)) * hsInvert(magSq); if( t >= 1.f ) *out = *v1; else if( t <= 0 ) *out = *v0; else *out = *v0 + del * t; } return t; } float hsBounds3::ClosestPointToInfiniteLine(const hsPoint3* p, const hsVector3* v, hsPoint3* out) { float magSq = v->MagnitudeSquared(); float t = 0.f; hsPoint3 origin(0,0,0); if( magSq < hsBounds::kRealSmall ) { *out = origin; } else { t = v->InnerProduct(hsVector3(*p)) * hsInvert(magSq); *out = hsPoint3(*v * t); } return t; } bool hsBounds3::ClosestPoint(const hsPoint3& p, hsPoint3& inner, hsPoint3& outer) const { // Look for axis intervals p is within int nSect = 0; int i; for( i = 0; i < 3; i++ ) { if( p[i] < fMins[i] ) { inner[i] = fMins[i]; outer[i] = fMaxs[i]; } else if( p[i] > fMaxs[i] ) { inner[i] = fMaxs[i]; outer[i] = fMins[i]; } else { inner[i] = p[i]; outer[i] = (p[i] - fMins[i] > fMaxs[i] - p[i]) ? fMins[i] : fMaxs[i]; nSect++; } } return nSect == 3; } void hsBounds3::Read(hsStream *stream) { hsBounds::Read(stream); fMins.Read(stream); fMaxs.Read(stream); fBounds3Flags = 0; } void hsBounds3::Write(hsStream *stream) { hsBounds::Write(stream); fMins.Write(stream); fMaxs.Write(stream); } ////////////////////////////////// ////////////////////////////////////////////////// // Plane Bounds util class ////////////////////////////////////////////////// hsPoint3 hsBoundsOriented::GetCenter() const { hsAssert(fCenterValid==true, "Unset center for hsBoundsOriented::GetCenter()"); return fCenter; } void hsBoundsOriented::TestPlane(const hsVector3 &n, hsPoint2 &depth) const { hsAssert(false, "TestPlane not a valid operation for hsBounsOriented"); } // // Return true if inside all the planes // bool hsBoundsOriented::IsInside(const hsPoint3* pos) const { hsAssert(fType == kBoundsNormal, "Invalid bounds type for hsBounds3::IsInside() "); if(fType == kBoundsEmpty) return false; if(fType == kBoundsFull) return true; int i; for( i = 0; i < fNumPlanes; i++ ) { float dis = fPlanes[i].fN.InnerProduct(pos); dis += fPlanes[i].fD; if( dis > 0.f ) return false; } return true; } void hsBoundsOriented::SetNumberPlanes(uint32_t n) { delete [] fPlanes; fPlanes = new hsPlane3[fNumPlanes = n]; } void hsBoundsOriented::SetPlane(uint32_t i, hsPlane3 *pln) { fType = kBoundsNormal; if( i >= fNumPlanes ) { hsPlane3 *newPlanes = new hsPlane3[i+1]; if( fPlanes ) { int k; for( k = 0; k < fNumPlanes; k++ ) *newPlanes++ = *fPlanes++; delete [] fPlanes; } fPlanes = newPlanes; fNumPlanes = i+1; } fPlanes[i] = *pln; } // // Make mesh from bounds3. Make boundsOriented from mesh tris. // void hsBoundsOriented::Reset(const hsBounds3* bounds) { #if 0 // MESH_GEN_DEFER hsGTriMesh tMesh; bounds->MakeTriMesh(&tMesh, 0 /* triFlags */); Reset(&tMesh); #endif // MESH_GEN_DEFER } #if 0 // // Make mesh from bounds3. Make boundsOriented from mesh tris. // void hsBoundsOriented::Union(const hsBounds3 *b) { #if 0 // MESH_GEN_DEFER hsGTriMesh tMesh; bounds->MakeTriMesh(&tMesh); int i; hsTriangle3 tri; for (i=0; iWriteLE32(fCenterValid); stream->WriteLE32(fNumPlanes); int i; for( i = 0; i < fNumPlanes; i++ ) { fPlanes[i].Write(stream); } } void hsBoundsOriented::Read(hsStream *stream) { hsBounds::Read(stream); fCenter.Read(stream); fCenterValid = (bool)stream->ReadLE32(); fNumPlanes = stream->ReadLE32(); if (fPlanes) delete [] fPlanes; fPlanes = new hsPlane3[fNumPlanes]; int i; for( i = 0; i < fNumPlanes; i++ ) { fPlanes[i].Read(stream); } } /////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////// hsBounds3Ext::hsBounds3Ext(const hsBounds3 &b) { Reset(&b); } hsBounds3Ext &hsBounds3Ext::operator=(const hsBounds3 &b) { Reset(&b); return *this; } void hsBounds3Ext::IMakeMinsMaxs() { hsAssert(!(fExtFlags & kAxisAligned), "Axis aligned box defined by min and max"); fMins = fMaxs = fCorner; int i; for( i = 0; i < 3; i++ ) { if(!IAxisIsZero(i) ) { int j; for( j = 0; j < 3; j++ ) { if( fAxes[i][j] < 0 ) fMins[j] += fAxes[i][j]; else fMaxs[j] += fAxes[i][j]; } } } } void hsBounds3Ext::IMakeDists() const { hsAssert(!(fExtFlags & kAxisAligned), "Dists only useful for transformed BB"); int i; for( i = 0; i < 3; i++ ) { fDists[i].fX = fCorner.InnerProduct(fAxes[i]); if( !IAxisIsZero(i) ) { fDists[i].fY = fDists[i].fX + fAxes[i].InnerProduct(fAxes[i]); if( fDists[i].fX > fDists[i].fY ) { float t = fDists[i].fX; fDists[i].fX = fDists[i].fY; fDists[i].fY = t; } } else fDists[i].fY = fDists[i].fX; } fExtFlags |= kDistsSet; } void hsBounds3Ext::IMakeSphere() const { if(!(fBounds3Flags & kCenterValid) ) ICalcCenter(); if( fExtFlags & kAxisAligned ) { if( fBounds3Flags & kIsSphere ) { fRadius = fMaxs[0] - fMins[0]; int i; for( i = 1; i < 3; i++ ) { float dist = fMaxs[i] - fMins[i]; if( dist < fRadius ) fRadius = dist; } fRadius *= 0.5f; } else { fRadius = sqrt(hsVector3(&fMaxs, &fCenter).MagnitudeSquared()); } } else { if( fBounds3Flags & kIsSphere ) { float minMagSq = fAxes[0].MagnitudeSquared(); float magSq = fAxes[1].MagnitudeSquared(); if( magSq < minMagSq ) magSq = minMagSq; magSq = fAxes[2].MagnitudeSquared(); if( magSq < minMagSq ) magSq = minMagSq; fRadius = sqrt(magSq); } else { hsVector3 accum; accum.Set(0,0,0); int i; for( i = 0; i < 3; i++ ) { if( !IAxisIsZero(i) ) accum += fAxes[i]; } fRadius = sqrt((accum * 0.5f).MagnitudeSquared()); } } fExtFlags |= kSphereSet; } void hsBounds3Ext::Reset(const hsBounds3 *b) { fExtFlags = kAxisAligned; hsBounds3::Reset(b); } void hsBounds3Ext::Reset(const hsPoint3 *p) { fExtFlags = kAxisAligned | kSphereSet; hsBounds3::Reset(p); fRadius = 0; } void hsBounds3Ext::Reset(const hsBounds3Ext *b) { hsBounds3::Reset(b); fExtFlags = b->fExtFlags; if (!(fExtFlags & kAxisAligned)) { fCorner = b->fCorner; fAxes[0] = b->fAxes[0]; fAxes[1] = b->fAxes[1]; fAxes[2] = b->fAxes[2]; } if (fExtFlags & kDistsSet) { fDists[0] = b->fDists[0]; fDists[1] = b->fDists[1]; fDists[2] = b->fDists[2]; } if (fExtFlags & kSphereSet) fRadius = b->fRadius; } void hsBounds3Ext::GetCorners(hsPoint3 *b) const { if( fExtFlags & kAxisAligned ) { hsBounds3::GetCorners(b); } else { int i; for( i = 0; i < 8; i++ ) { b[i] = fCorner; if( !(i & 0x1) && !(fExtFlags & kAxisZeroZero) )b[i] += fAxes[0]; if( !(i & 0x2) && !(fExtFlags & kAxisOneZero) )b[i] += fAxes[1]; if( !(i & 0x4) && !(fExtFlags & kAxisTwoZero) )b[i] += fAxes[2]; } } } void hsBounds3Ext::GetAxes(hsVector3 *fAxis0, hsVector3 *fAxis1, hsVector3 *fAxis2) const { if( !(fExtFlags & kAxisAligned) ) { *fAxis0 = fAxes[0]; *fAxis1 = fAxes[1]; *fAxis2 = fAxes[2]; } else { fAxis0->Set(fMaxs.fX - fMins.fX, 0, 0); fAxis1->Set(0, fMaxs.fY - fMins.fY, 0); fAxis2->Set(0, 0, fMaxs.fZ - fMins.fZ); } } void hsBounds3Ext::Reset(int n, const hsPoint3 *p) { fExtFlags = kAxisAligned; hsBounds3::Reset(n, p); } // mf horse - could union in a point preserving axes... void hsBounds3Ext::Union(const hsPoint3 *p) { fExtFlags = kAxisAligned; hsBounds3::Union(p); } void hsBounds3Ext::Union(const hsVector3 *v) { #if 0 // smarter union fExtFlags = kAxisAligned; hsBounds3::Union(v); #else // smarter union if( fExtFlags & kAxisAligned ) { hsBounds3::Union(v); } else { int i; for( i = 0; i < 3; i++ ) { float dot = fAxes[i].InnerProduct(v); dot /= fAxes[i].MagnitudeSquared(); if( dot > 0 ) { fAxes[i] += dot * fAxes[i]; fExtFlags &= ~(1 << (20+i)); // axis not zero no more } else if( dot < 0 ) { hsVector3 del = dot * fAxes[i]; fCorner += del; del = -del; fAxes[i] += del; fExtFlags &= ~(1 << (20+i)); // axis not zero no more } } fExtFlags &= ~(kSphereSet | kDistsSet); fBounds3Flags &= ~kCenterValid; } #endif // smarter union } void hsBounds3Ext::Union(const hsBounds3 *b) { fExtFlags = kAxisAligned; hsBounds3::Union(b); } void hsBounds3Ext::MakeSymmetric(const hsPoint3* p) { if( fType != kBoundsNormal ) return; if( fExtFlags & kAxisAligned ) { fExtFlags = kAxisAligned; hsBounds3::MakeSymmetric(p); return; } // Can do this preserving axes, but may not be worth it. fExtFlags = kAxisAligned; hsBounds3::MakeSymmetric(p); } void hsBounds3Ext::InscribeSphere() { fBounds3Flags |= kIsSphere; fExtFlags |= kAxisAligned; IMakeSphere(); return; #if 0 if( fType != kBoundsNormal ) return; if( fExtFlags & kAxisAligned ) { hsBounds3::InscribeSphere(); return; } const float oneThird = hsInvert(3.f); // float a = GetMaxDim() * hsInvert(6.f); float a = GetRadius() * oneThird; hsPoint3 p = GetCenter(); p.fX += a; p.fY += a; p.fZ += a; fMaxs = p; a *= -2.f; p.fX += a; p.fY += a; p.fZ += a; fMins = p; // Center still valid, type still normal fExtFlags = kAxisAligned; #endif } void hsBounds3Ext::Transform(const hsMatrix44 *m) { if( fType != kBoundsNormal ) return; if( fExtFlags & kAxisAligned ) { fExtFlags = 0; fCorner = *m * fMins; hsVector3 v; float span; span = fMaxs.fX - fMins.fX; if( span < kRealSmall ) { fExtFlags |= kAxisZeroZero; span = 1.f; } v.Set(span, 0, 0); fAxes[0] = *m * v; span = fMaxs.fY - fMins.fY; if( span < kRealSmall ) { fExtFlags |= kAxisOneZero; span = 1.f; } v.Set(0, span, 0); fAxes[1] = *m * v; span = fMaxs.fZ - fMins.fZ; if( span < kRealSmall ) { fExtFlags |= kAxisTwoZero; span = 1.f; } v.Set(0, 0, span); fAxes[2] = *m * v; } else { #if 0 // IDENT if( m->fFlags & hsMatrix44::kIsIdent ) return; #endif // IDENT fCorner = *m * fCorner; fAxes[0] = *m * fAxes[0]; fAxes[1] = *m * fAxes[1]; fAxes[2] = *m * fAxes[2]; fExtFlags &= kAxisZeroZero|kAxisOneZero|kAxisTwoZero; } IMakeMinsMaxs(); fBounds3Flags &= ~kCenterValid; } void hsBounds3Ext::Translate(const hsVector3 &v) { if( fType != kBoundsNormal ) return; fMins += v; fMaxs += v; if( fBounds3Flags & kCenterValid ) fCenter += v; if( !(fExtFlags & kAxisAligned) ) { fCorner += v; int i; for( i = 0; i < 3; i++ ) { float d; d = fAxes[i].InnerProduct(v); fDists[i].fX += d; fDists[i].fY += d; } } } bool hsBounds3Ext::IsInside(const hsPoint3 *p) const { if( fExtFlags & kAxisAligned ) return hsBounds3::IsInside(p); if( !(fExtFlags & kDistsSet) ) IMakeDists(); int i; for( i = 0; i < 3; i++ ) { float diss = p->InnerProduct(fAxes[i]); if( (diss < fDists[i].fX) ||(diss > fDists[i].fY) ) return false; } return true; } // neg, pos, zero == disjoint, I contain other, overlap int32_t hsBounds3Ext::TestBound(const hsBounds3Ext& other) const { if( fExtFlags & kAxisAligned ) return hsBounds3::TestBound(other); if( !(fExtFlags & kDistsSet) ) IMakeDists(); int32_t retVal = 1; int i; for( i = 0; i < 3; i++ ) { hsPoint2 depth; other.TestPlane(fAxes[i], depth); if( fDists[i].fX > depth.fY ) return -1; if( fDists[i].fY < depth.fX ) return -1; if( fDists[i].fY < depth.fY ) retVal = 0; if( fDists[i].fX > depth.fX ) retVal = 0; } return retVal; } void hsBounds3Ext::TestPlane(const hsVector3 &n, hsPoint2 &depth) const { hsAssert(fType == kBoundsNormal, "TestPlane only valid for kBoundsNormal filled bounds"); if( fExtFlags & kAxisAligned ) { hsBounds3::TestPlane(n, depth); } else { float dmax = fCorner.InnerProduct(n); float dmin = dmax; int i; for( i = 0; i < 3; i++ ) { if( !IAxisIsZero(i) ) { float d; d = fAxes[i].InnerProduct(n); if( d < 0 ) dmin += d; else dmax += d; } } depth.fX = dmin; depth.fY = dmax; } } void hsBounds3Ext::TestPlane(const hsPlane3 *p, const hsVector3 &myVel, hsPoint2 &depth) const { TestPlane(p->fN, myVel, depth); } void hsBounds3Ext::TestPlane(const hsVector3 &n, const hsVector3 &myVel, hsPoint2 &depth) const { if( fExtFlags & kAxisAligned ) { float dmax = fMins.InnerProduct(n); float dmin = dmax; float dvel = myVel.InnerProduct(n); if( dvel < 0 ) dmin += dvel; else dmax += dvel; int i; for( i = 0; i < 3; i++ ) { float dd; dd = fMaxs[i] - fMins[i]; dd *= n[i]; if( dd < 0 ) dmin += dd; else dmax += dd; } depth.fX = dmin; depth.fY = dmax; } else { float dmax = fCorner.InnerProduct(n); float dmin = dmax; float dvel = myVel.InnerProduct(n); if( dvel < 0 ) dmin += dvel; else dmax += dvel; int i; for( i = 0; i < 3; i++ ) { if( !IAxisIsZero(i) ) { float d; d = fAxes[i].InnerProduct(n); if( d < 0 ) dmin += d; else dmax += d; } } depth.fX = dmin; depth.fY = dmax; } } int32_t hsBounds3Ext::TestPoints(int n, const hsPoint3 *pList, const hsVector3 &ptVel) const { if( fExtFlags & kAxisAligned ) { int32_t retVal = -1; int i; for( i = 0; i < 3; i++ ) { float effMax = fMaxs[i]; float effMin = fMins[i]; if( ptVel[i] < 0 ) effMax -= ptVel[i]; else effMin -= ptVel[i]; int j; const uint32_t low = 0x1, hi = 0x2; uint32_t mask = low | hi; for( j = 0; j < n; j++ ) { if( pList[j][i] > effMin ) mask &= ~low; if( pList[j][i] < effMax ) mask &= ~hi; if( mask ) retVal = 0; } if( mask ) return 1; } return retVal; } else // non-axis aligned case { int32_t retVal = -1; // all inside if( !(fExtFlags & kDistsSet) ) IMakeDists(); int i; for( i = 0; i < 3; i++ ) { float diff = fAxes[i].InnerProduct(ptVel); bool someLow = false; bool someHi = false; bool someIn = false; int j; for( j = 0; j < n; j++ ) { float d = fAxes[i].InnerProduct(pList[j]); float ddiff = d + diff; if( d < fDists[i].fX ) someLow = true; else if( d > fDists[i].fY ) someHi = true; else someIn = true; if( ddiff < fDists[i].fX ) someLow = true; else if( ddiff > fDists[i].fY ) someHi = true; else someIn = true; if( someIn &&(someHi || someLow) ) break; } if( someHi && !(someLow || someIn) ) return 1; if( someLow && !(someHi || someIn) ) return 1; if( someHi || someLow ) retVal = 0; } return retVal; } } int32_t hsBounds3Ext::TestPoints(int n, const hsPoint3 *pList) const { bool someIn = false; bool someOut = false; int i; for( i = 0; i < n; i++ ) { if( IsInside(pList+i) ) someIn = true; else someOut = true; if( someIn && someOut ) return 0; } if( someIn ) return -1; return 1; } bool hsBounds3Ext::ClosestPoint(const hsPoint3& p, hsPoint3& inner, hsPoint3& outer) const { if( fExtFlags & kAxisAligned ) return hsBounds3::ClosestPoint(p, inner, outer); if( !(fExtFlags & kDistsSet) ) IMakeDists(); int nSect = 0; inner = outer = fCorner; int i; for( i = 0; i < 3; i++ ) { float dist = fAxes[i].InnerProduct(p); if( dist < fDists[i].fX ) { outer += fAxes[i]; } else if( dist > fDists[i].fY ) { inner += fAxes[i]; } else { float t = (dist - fDists[i].fX) / (fDists[i].fY - fDists[i].fX); inner += t * fAxes[i]; if( t > 0.5f ) outer += fAxes[i]; nSect++; } } return nSect == 3; } bool hsBounds3Ext::ISectBB(const hsBounds3Ext &other, const hsVector3 &myVel) const { if( fExtFlags & kAxisAligned ) { if( other.fExtFlags & kAxisAligned ) return ISectABB(other, myVel); return other.ISectBB(*this, -myVel); } hsAssert(!(fExtFlags & kAxisAligned), "Other can be axis-aligned, but not me!"); hsPoint2 depth; if( !(fExtFlags & kDistsSet) ) IMakeDists(); if( !(other.fExtFlags & (kDistsSet|kAxisAligned)) ) other.IMakeDists(); int i; for( i = 0; i < 3; i++ ) { other.TestPlane(fAxes[i], -myVel, depth); if( (depth.fX > fDists[i].fY) ||(depth.fY < fDists[i].fX) ) return false; if( other.fExtFlags & kAxisAligned ) { float myMin = fMins[i]; float myMax = fMaxs[i]; if( myVel[i] < 0 ) myMin += myVel[i]; else myMax += myVel[i]; if( (other.fMins[i] > myMax) ||(other.fMaxs[i] < myMin) ) return false; } else { TestPlane(other.fAxes[i], myVel, depth); if( (depth.fX > other.fDists[i].fY) ||(depth.fY < other.fDists[i].fX) ) return false; } // still leaves the 3 axes of origAxis.Cross(myVel) hsVector3 ax = fAxes[i] % myVel; float dmax = fCorner.InnerProduct(ax); float dmin = dmax; int j = i+1; if( 3 == j )j = 0; float d; d = fAxes[j].InnerProduct(ax); if( d < 0 ) dmin += d; else dmax += d; j = ( j == 2 ? 0 : j+1 ); d = fAxes[j].InnerProduct(ax); if( d < 0 ) dmin += d; else dmax += d; other.TestPlane(ax, depth); if( (depth.fX > dmax) ||(depth.fY < dmin) ) return false; } return true; } static bool ISectInterval(const hsPoint2& other, const hsPoint2& mine) { if( other.fY - mine.fX <= 0 ) return false; if( mine.fY - other.fX <= 0 ) return false; return true; } static bool ITestDepth(const hsPoint2& other, const hsPoint2& mine, const hsVector3& inAx, hsVector3 &outAx, float& depth) { depth = 0; float d0, d1; d0 = other.fY - mine.fX; if( d0 <= 0 ) return false; d1 = mine.fY - other.fX; if( d1 <= 0 ) return false; // if one interval is proper subset of other, skip if( (mine.fX < other.fX)^(mine.fY < other.fY) ) { depth = 0; return true; } if( d0 < d1 ) { outAx = inAx; depth = d0; return true; } outAx = -inAx; depth = d1; return true; } int32_t hsBounds3Ext::IClosestISect(const hsBounds3Ext& other, const hsVector3& myVel, float* tClose, float* tImpact) const { // Should assert both have their spheres set. hsVector3 meToOt(&other.GetCenter(), &GetCenter()); // cTerm = (myCenter - otCenter)^2 - (myRad + otRad)^2 float cTerm; cTerm = GetRadius() + other.GetRadius(); cTerm *= -cTerm; float meToOtLen = meToOt.MagnitudeSquared(); cTerm += meToOtLen; if( cTerm <= 0 ) { *tClose = *tImpact = 0; return -1; // started off in contact } float ooATerm = myVel.InnerProduct(myVel); if( ooATerm < hsBounds::kRealSmall ) { *tClose = *tImpact = 0; return 0; } ooATerm = hsInvert(ooATerm); float bTerm = myVel.InnerProduct(meToOt); bTerm *= ooATerm; float bSqTerm = bTerm * bTerm; // bTerm is t for closest point to line float det = bSqTerm - ooATerm * cTerm; if( det < 0 ) { *tClose = *tImpact = bTerm; return 0; } det = sqrt(det); *tClose = bTerm; *tImpact = bTerm - det; return 1; } void hsBounds3Ext::Unalign() { fExtFlags = 0; fCorner = fMins; hsVector3 v; float span; span = fMaxs.fX - fMins.fX; if( span < kRealSmall ) { fExtFlags |= kAxisZeroZero; span = 1.f; } fAxes[0].Set(span, 0, 0); span = fMaxs.fY - fMins.fY; if( span < kRealSmall ) { fExtFlags |= kAxisOneZero; span = 1.f; } fAxes[1].Set(0, span, 0); span = fMaxs.fZ - fMins.fZ; if( span < kRealSmall ) { fExtFlags |= kAxisTwoZero; span = 1.f; } fAxes[2].Set(0, 0, span); } bool hsBounds3Ext::ISectBB(const hsBounds3Ext &other, const hsVector3 &myVel, hsHitInfoExt *hit) const { if( fExtFlags & kAxisAligned ) { hsBounds3Ext meUnalign(*this); meUnalign.Unalign(); return meUnalign.ISectBB(other, myVel, hit); } hsAssert(!(fExtFlags & kAxisAligned), "Other can be axis-aligned, but not me!"); hsPoint2 depth; if( !(fExtFlags & kDistsSet) ) IMakeDists(); if( !(other.fExtFlags & (kDistsSet|kAxisAligned)) ) other.IMakeDists(); float tstDepths[9]; hsVector3 tstAxes[9]; float totDepth = 0; int nDeep = 0; int i; for( i = 0; i < 3; i++ ) { const float kFavorConstant = 0.01f; // smaller is favored other.TestPlane(fAxes[i], -myVel, depth); if( !ITestDepth(depth, fDists[i], fAxes[i], tstAxes[i], tstDepths[i]) ) return false; other.TestPlane(fAxes[i], depth); if( !ISectInterval(depth, fDists[i]) ) tstDepths[i] *= kFavorConstant; if( tstDepths[i] > 0 ) { totDepth += tstDepths[i]; nDeep++; } if( other.fExtFlags & kAxisAligned ) { hsPoint2 mine; mine.fX = fMins[i]; mine.fY = fMaxs[i]; if( myVel[i] > 0 )mine.fY += myVel[i]; else mine.fX += myVel[i]; depth.fX = other.fMins[i]; depth.fY = other.fMaxs[i]; hsVector3 ax; ax.Set( 0 == i ? 1.f : 0, 1 == i ? 1.f : 0, 2 == i ? 1.f : 0); if( !ITestDepth(depth, mine, ax, tstAxes[i+3], tstDepths[i+3]) ) return false; mine.fX = fMins[i]; mine.fY = fMaxs[i]; if( !ISectInterval(depth, mine) ) tstDepths[i+3] *= kFavorConstant; if( tstDepths[i+3] ) { totDepth += tstDepths[i+3]; nDeep++; } } else { TestPlane(other.fAxes[i], myVel, depth); if( !ITestDepth(other.fDists[i], depth, other.fAxes[i], tstAxes[i+3], tstDepths[i+3]) ) return false; TestPlane(other.fAxes[i], depth); if( !ISectInterval(other.fDists[i], depth) ) tstDepths[i+3] *= kFavorConstant; if( tstDepths[i+3] ) { totDepth += tstDepths[i+3]; nDeep++; } } #if 0 // still leaves the 3 axes of origAxis.Cross(myVel) hsVector3 ax = fAxes[i] % myVel; if( ax.MagnitudeSquared() > kRealSmall ) { hsPoint2 myDepth; myDepth.fX = myDepth.fY = fCorner.InnerProduct(ax); float d; int j = i == 2 ? 0 : i+1; if( !IAxisIsZero(j) ) { d = fAxes[j].InnerProduct(ax); if( d < 0 ) myDepth.fX += d; else myDepth.fY += d; } j = ( j == 2 ? 0 : j+1 ); if( !IAxisIsZero(j) ) { d = fAxes[j].InnerProduct(ax); if( d < 0 ) myDepth.fX += d; else myDepth.fY += d; } other.TestPlane(ax, depth); if( !ITestDepth(depth, myDepth, ax, tstAxes[i+6], tstDepths[i+6]) ) return false; totDepth += tstDepths[i+6]; } else tstDepths[i+6] = 0; #endif } hsVector3 norm; if( totDepth <= 0 ) { float t, tIgnore; IClosestISect(other, myVel, &tIgnore, &t); if( t < 0 ) t = 0; else if( t > 1.f ) t = 1.f; hsPoint3 hitPt = GetCenter() + myVel * t; norm.Set(&hitPt, &other.GetCenter()); } else { // now do a weighted average of the axes hsAssert(totDepth > 0, "nobody home"); norm.Set(0,0,0); for( i =0; i < 6; i++ ) { if( tstDepths[i] > 0 ) norm += tstAxes[i] / tstDepths[i]; // norm += tstAxes[i] * (1.f - tstDepths[i] / totDepth); } } hsPoint2 otherDepth; norm.Normalize(); other.TestPlane(norm, otherDepth); TestPlane(norm, myVel, depth); hit->Set(this, &other, norm, otherDepth.fY - depth.fX); // mf horse hack test if( hit->fDepth < 0 ) return false; hsAssert(hit->fDepth >= 0, "Negative Depth"); return true; } bool hsBounds3Ext::ISectABB(const hsBounds3Ext &other, const hsVector3 &myVel) const { int i; for( i = 0; i < 3; i++ ) { float effMax = fMaxs[i]; float effMin = fMins[i]; if( myVel[i] > 0 ) effMax += myVel[i]; else effMin += myVel[i]; if( (effMax < other.fMins[i]) ||(effMin > other.fMaxs[i]) ) return false; } return true; } bool hsBounds3Ext::ISectBS(const hsBounds3Ext &other, const hsVector3 &myVel) const { if( !(fExtFlags & kSphereSet) ) IMakeSphere(); if( !(other.fExtFlags & kSphereSet) ) other.IMakeSphere(); hsPoint3 closestPt = GetCenter(); // we should know whether we have a useful velocity or not... // having the speed cached away would get rid of several // such uglies... if( myVel.MagnitudeSquared() > 0 ) { float parm = hsVector3(&other.GetCenter(), &fCenter).InnerProduct(myVel) / myVel.InnerProduct(myVel); if( parm > 0 ) { if( parm > 1.f ) parm = 1.f; closestPt += myVel * parm; } } float combRad = fRadius + other.fRadius; return hsVector3(&closestPt, &other.GetCenter()).MagnitudeSquared() < combRad*combRad; } #if 0 // Commenting out this which will be made redundant and/or obsolete by Havok integration bool hsBounds3Ext::ISectTriABB(hsBounds3Tri &tri, const hsVector3 &myVel) const { int i; for( i = 0; i < 3; i++ ) { float effMax = fMaxs[i]; float effMin = fMins[i]; if( myVel[i] < 0 ) effMin += myVel[i]; else effMax += myVel[i]; int j; const uint32_t low = 0x1, hi = 0x2; uint32_t mask = low | hi; for( j = 0; j < 3; j++ ) { if( tri.fVerts[j][i] > effMin ) mask &= ~low; if( tri.fVerts[j][i] < effMax ) mask &= ~hi; } if( mask ) return false; } return true; } bool hsBounds3Ext::TriBSHitInfo(hsBounds3Tri& tri, const hsVector3& myVel, hsHitInfoExt* hit) const { hsPoint3 myPt = GetCenter(); myPt += myVel; hsPoint3 closePt; bool onTri = tri.ClosestTriPoint(&myPt, &closePt); hsVector3 repel; repel.Set(&myPt, &closePt); float myDepth; float repelMagSq = repel.MagnitudeSquared(); if( repelMagSq < hsBounds::kRealSmall ) { repel = tri.fNormal; myDepth = GetRadius(); } else { myDepth = hsFastMath::InvSqrt(repelMagSq); repel *= myDepth; myDepth = 1.f / myDepth; myDepth = GetRadius() - myDepth; if( myDepth < 0 ) myDepth = 0; } if( tri.fNormal.InnerProduct(myPt) < tri.fDist ) { repel += tri.fNormal * (-2.f * repel.InnerProduct(tri.fNormal)); myDepth = GetRadius() * 2.f - myDepth; if( myDepth < 0 ) myDepth = 0; } hit->Set(this, &tri, &repel, myDepth); return true; } #if 0 // TOCENTER bool hsBounds3Ext::TriBBHitInfo(hsBounds3Tri& tri, const hsVector3& myVel, hsHitInfoExt* hit) const { // Find our closest point (after movement) hsPoint3 myPt = fCorner; myPt += myVel; const float kMinDist = 1.f; // Huge min dist because world is really big right now. mf horse int i; for( i = 0; i < 3; i++ ) { float axDot = fAxes[i].InnerProduct(tri.fNormal); if( axDot < -kMinDist ) { // moving towards myPt += fAxes[i]; } else if( axDot < kMinDist ) { // need to interp axDot /= -(kMinDist*2.f); axDot += 0.5f; myPt += fAxes[i] * axDot; } // else moving away, skip it } // Find closest point on tri to our closest corner hsPoint3 closePt; bool onTri = tri.ClosestTriPoint(&myPt, &closePt); // Repel vector is from closest corner to closest point on tri hsVector3 repel; repel.Set(&myPt, &closePt); repel += (-2.f * repel.InnerProduct(tri.fNormal)) * tri.fNormal; float repelMag = hsFastMath::InvSqrt(repel.MagnitudeSquared()); if( repelMag < hsBounds::kRealSmall ) { hsPoint2 faceDepth; TestPlane(tri.fNormal, myVel, faceDepth); hit->Set(this, &tri, &tri.fNormal, tri.fDist - faceDepth.fX); return true; } repel *= repelMag; repelMag = 1.f / repelMag; hit->Set(this, &tri, &repel, repelMag); // Return true of our closest corner projects on to tri (along normal or myVel?) return onTri; } #else // TOCENTER bool hsBounds3Ext::TriBBHitInfo(hsBounds3Tri& tri, const hsVector3& myVel, hsHitInfoExt* hit) const { hsPoint3 myPt = GetCenter(); myPt += myVel; hsPoint3 closePt; bool onTri = tri.ClosestTriPoint(&myPt, &closePt); hsVector3 repel; repel.Set(&myPt, &closePt); float repelDotNorm = repel.InnerProduct(tri.fNormal); if( repelDotNorm < 0 ) { repel += (-2.f * repelDotNorm) * tri.fNormal; } float repelMagSq = repel.MagnitudeSquared(); if( repelMagSq < hsBounds::kRealSmall ) repel = tri.fNormal; else { float repelMag = hsFastMath::InvSqrt(repelMagSq); repel *= repelMag; } hsPoint2 triDepth; tri.TestPlane(repel, triDepth); hsPoint2 myDepth; TestPlane(repel, myVel, myDepth); hit->Set(this, &tri, &repel, triDepth.fY - myDepth.fX); return true; } #endif // TOCENTER bool hsBounds3Ext::ISectTriBB(hsBounds3Tri &tri, const hsVector3 &myVel) const { hsPoint2 faceDepth; // first test box against the triangle plane TestPlane(tri.fNormal, myVel, faceDepth); if( (tri.fDist > faceDepth.fY) ||(tri.fDist < faceDepth.fX) ) return false; // now test tri against box planes if( TestPoints(3, tri.fVerts, -myVel) > 0 ) return false; if( !(tri.fTriFlags & hsBounds3Tri::kAxesSet) ) tri.SetAxes(); float depth = tri.fDist - faceDepth.fX; hsVector3 norm = tri.fNormal; // that only leaves the planes of triEdge.Cross(vel) int i; for( i = 0; i < 3; i++ ) { hsPoint2 depths; TestPlane(tri.fPerpAxes[i], myVel, depths); if( (tri.fPerpDists[i].fY < depths.fX) ||(tri.fPerpDists[i].fX > depths.fY) ) return false; #if 0 float testDepth = tri.fPerpDists[i].fY - depths.fX; if( testDepth < depth ) { depth = testDepth; norm = tri.fPerpAxes[i]; } #endif } float vDotN = myVel.InnerProduct(tri.fNormal); if( vDotN > 0 ) depth -= vDotN; if( depth <= 0 ) return false; return true; } bool hsBounds3Ext::ISectTriBB(hsBounds3Tri &tri, const hsVector3 &myVel, hsHitInfoExt *hit) const { hsPoint2 faceDepth; // first test box against the triangle plane TestPlane(tri.fNormal, myVel, faceDepth); if( (tri.fDist > faceDepth.fY) ||(tri.fDist < faceDepth.fX) ) return false; float centDist = tri.fNormal.InnerProduct(hit->fRootCenter); if( centDist < tri.fDist ) return false; // now test tri against box planes if( TestPoints(3, tri.fVerts, -myVel) > 0 ) return false; if( !(tri.fTriFlags & hsBounds3Tri::kAxesSet) ) tri.SetAxes(); float depth = tri.fDist - faceDepth.fX; hsVector3 norm = tri.fNormal; // that only leaves the planes of triEdge.Cross(vel) int i; for( i = 0; i < 3; i++ ) { hsPoint2 depths; TestPlane(tri.fPerpAxes[i], myVel, depths); if( (tri.fPerpDists[i].fY < depths.fX) ||(tri.fPerpDists[i].fX > depths.fY) ) return false; #if 0 float testDepth = tri.fPerpDists[i].fY - depths.fX; if( testDepth < depth ) { depth = testDepth; norm = tri.fPerpAxes[i]; } #endif } float vDotN = myVel.InnerProduct(tri.fNormal); if( vDotN > 0 ) depth -= vDotN; if( (tri.fTriFlags & hsBounds3Tri::kDoubleSide) ) { if( tri.fNormal.InnerProduct(hit->fRootCenter) - tri.fDist < 0 ) { depth = -tri.fDist + faceDepth.fY; if( vDotN < 0 ) depth += vDotN; tri.fNormal = -tri.fNormal; tri.fDist = -tri.fDist; } } if( depth <= 0 ) return false; // printf("ATTRIBUTE triBnd addr %x\n",&tri.fNormal); /* Takashi Nakata TEST Add */ hit->Set(this, &tri, &norm, depth); return hit->fDepth > hsBounds::kRealSmall; } bool hsBounds3Ext::ISectTriBS(hsBounds3Tri &tri, const hsVector3 &myVel) const { if( !(fExtFlags & kSphereSet) ) IMakeSphere(); hsAssert(fBounds3Flags & kCenterValid, "Sphere set but not center (TriBS)"); float radScaled = fRadius * tri.fNormal.Magnitude(); float centerDist = tri.fNormal.InnerProduct(fCenter); float velDist = tri.fNormal.InnerProduct(myVel); float effMin = centerDist; float effMax = centerDist; if( velDist > 0 ) effMax += velDist; else effMin += velDist; effMax += radScaled; effMin -= radScaled; if( tri.fDist <= effMin ) return false; if( tri.fDist >= effMax ) return false; // mf horse float normDepth = tri.fDist - (centerDist - radScaled + velDist); if( normDepth <= 0 ) { // we'll report a depth of zero to (hopefully) neutralize any effects if( tri.fTriFlags & hsBounds3Tri::kDoubleSide ) { normDepth = -tri.fDist + (centerDist + radScaled + velDist); if( normDepth > 0 ) { tri.fDist = -tri.fDist; tri.fNormal = -tri.fNormal; } else normDepth = 0; } else normDepth = 0; } hsAssert(normDepth >= 0, "NegativeDepth"); if( !(tri.fTriFlags & hsBounds3Tri::kAxesSet) ) tri.SetAxes(); hsAssert(fBounds3Flags & kCenterValid, "Sphere set but not center (TriBS)"); int i; for( i = 0; i < 3; i++ ) { centerDist = tri.fPerpAxes[i].InnerProduct(fCenter); velDist = tri.fPerpAxes[i].InnerProduct(myVel); effMin = centerDist; effMax = centerDist; if( velDist > 0 ) effMax += velDist; else effMin += velDist; float radScale = fRadius * tri.fPerpAxes[i].Magnitude(); effMax += radScale; effMin -= radScale; if( tri.fPerpDists[i].fY <= effMin ) return false; if( tri.fPerpDists[i].fX >= effMax ) return false; } return true; } bool hsBounds3Ext::ISectTriBS(hsBounds3Tri &tri, const hsVector3 &myVel, hsHitInfoExt *hit) const { if( !(fExtFlags & kSphereSet) ) IMakeSphere(); hsAssert(fBounds3Flags & kCenterValid, "Sphere set but not center (TriBS)"); float radScaled = fRadius * tri.fNormal.Magnitude(); float centerDist = tri.fNormal.InnerProduct(fCenter); float velDist = tri.fNormal.InnerProduct(myVel); float effMin = centerDist; float effMax = centerDist; if( velDist > 0 ) effMax += velDist; else effMin += velDist; effMax += radScaled; effMin -= radScaled; if( tri.fDist <= effMin ) return false; if( tri.fDist >= effMax ) return false; // mf horse float normDepth = tri.fDist - (centerDist - radScaled + velDist); if( normDepth <= 0 ) { #if 0 // need to report the collision even if the object is leaving the tri // we'll report a depth of zero to (hopefully) neutralize any effects if(!(tri.fTriFlags & hsBounds3Tri::kDoubleSide) ) return false; normDepth = -tri.fDist + (centerDist + radScaled + velDist); if( normDepth <= 0 ) return false; tri.fDist = -tri.fDist; tri.fNormal = -tri.fNormal; #else // we'll report a depth of zero to (hopefully) neutralize any effects if( tri.fTriFlags & hsBounds3Tri::kDoubleSide ) { normDepth = -tri.fDist + (centerDist + radScaled + velDist); if( normDepth > 0 ) { tri.fDist = -tri.fDist; tri.fNormal = -tri.fNormal; } else normDepth = 0; } else normDepth = 0; #endif } hsAssert(normDepth >= 0, "NegativeDepth"); if( !(tri.fTriFlags & hsBounds3Tri::kAxesSet) ) tri.SetAxes(); hsAssert(fBounds3Flags & kCenterValid, "Sphere set but not center (TriBS)"); int i; for( i = 0; i < 3; i++ ) { centerDist = tri.fPerpAxes[i].InnerProduct(fCenter); velDist = tri.fPerpAxes[i].InnerProduct(myVel); effMin = centerDist; effMax = centerDist; if( velDist > 0 ) effMax += velDist; else effMin += velDist; float radScale = fRadius * tri.fPerpAxes[i].Magnitude(); effMax += radScale; effMin -= radScale; if( tri.fPerpDists[i].fY <= effMin ) return false; if( tri.fPerpDists[i].fX >= effMax ) return false; } float invLen = hsInvert(tri.fNormal.Magnitude()); hit->Set(this, &tri, &tri.fNormal, normDepth); // mf horse - move this into Set()? hit->fNormal *= invLen; hit->fDepth *= invLen; return true; } #endif // Commenting out this which will be made redundant and/or obsolete by Havok integration bool hsBounds3Ext::ISectBSBS(const hsBounds3Ext& other, const hsVector3& myVel, hsHitInfoExt *hit) const { if(!(fExtFlags & kSphereSet) ) IMakeSphere(); if(!(other.fExtFlags & kSphereSet) ) other.IMakeSphere(); float tClose, tImpact; if( !IClosestISect(other, myVel, &tClose, &tImpact) ) return false; if( (tImpact < 0) || (tImpact > 1.f) ) return false; if( tClose < 0 ) tClose = 0; if( tClose > 1.f ) tClose = 1.f; hsPoint3 closePt = GetCenter() + myVel * tClose; hsVector3 del; del.Set(&closePt, &other.GetCenter()); float mag = del.Magnitude(); float depth = GetRadius() + other.GetRadius() - mag; if( depth <= 0 ) return false; hsPoint3 hitPt = GetCenter() + myVel * tImpact; hsVector3 norm; norm.Set(&hitPt, &other.GetCenter()); norm.Normalize(); hit->Set(this, &other, norm, depth); return true; } bool hsBounds3Ext::ISectBSBox(const hsBounds3Ext &other, const hsVector3 &myVel, hsHitInfoExt *hit) const { hit->fDelPos = -myVel; if( other.ISectBoxBS(*this, hit->fDelPos, hit) ) { hit->fNormal = -hit->fNormal; hit->fBoxBnd = this; hit->fOtherBoxBnd = &other; hit->fDelPos = myVel; return true; } hit->fDelPos = myVel; return false; } bool hsBounds3Ext::ISectBoxBS(const hsBounds3Ext &other, const hsVector3 &myVel, hsHitInfoExt *hit) const { if(!(fExtFlags & kSphereSet) ) IMakeSphere(); hsAssert(fBounds3Flags & kCenterValid, "Sphere set but not center (BoxBS(vel))"); hsVector3 minAxis; float minDepth; bool haveAxis = false; hsVector3 tstAxis; float tstDepth; int i; for( i = 0; i < 3; i++ ) { bool tryAxis = false; if( other.fExtFlags & kAxisAligned ) { // first try the other box axes float effMin = fCenter[i]; float effMax = effMin; float velDist = myVel[i]; if( velDist > 0 ) effMax += velDist; else effMin += velDist; effMax += fRadius; effMin -= fRadius; if( effMax < other.fMins[i] ) return false; if( effMin > other.fMaxs[i] ) return false; if ((other.fMins[i] <= effMin) && (other.fMaxs[i] <= effMax)) { tstDepth = other.fMaxs[i] - effMin; hsAssert(tstDepth > -kRealSmall, "Late to be finding sep axis"); tstAxis.Set(i == 0 ? 1.f : 0, i & 1 ? 1.f : 0, i & 2 ? 1.f : 0); tryAxis = true; } else if ((other.fMins[i] >= effMin) && (other.fMaxs[i] >= effMax)) { tstDepth = effMax - other.fMins[i]; hsAssert(tstDepth > -kRealSmall, "Late to be finding sep axis"); tstAxis.Set(i == 0 ? -1.f : 0, i & 1 ? -1.f : 0, i & 2 ? -1.f : 0); tryAxis = true; } } else { // first try the other box axes float radScaled = fRadius * other.fAxes[i].Magnitude(); float centerDist = other.fAxes[i].InnerProduct(fCenter); float effMin = centerDist; float effMax = centerDist; float velDist = other.fAxes[i].InnerProduct(myVel); if( velDist > 0 ) effMax += velDist; else effMin += velDist; effMax += radScaled; effMin -= radScaled; if( !(other.fExtFlags & kDistsSet) ) other.IMakeDists(); if( effMax < other.fDists[i].fX ) return false; if( effMin > other.fDists[i].fY ) return false; if (centerDist <= other.fDists[i].fX) { tstDepth = effMax - other.fDists[i].fX; tstAxis = -other.fAxes[i]; hsAssert(tstDepth > -kRealSmall, "Late to be finding sep axis"); } else if (centerDist >= other.fDists[i].fY) { tstDepth = other.fDists[i].fY - effMin; tstAxis = other.fAxes[i]; hsAssert(tstDepth > -kRealSmall, "Late to be finding sep axis"); } } if( tryAxis ) { float magSq = tstAxis.MagnitudeSquared(); if( magSq > kRealSmall ) { tstDepth *= tstDepth * hsInvert(magSq); if( !haveAxis||(tstDepth < minDepth) ) { minDepth = tstDepth; minAxis = tstAxis; haveAxis = true; } hsAssert(!haveAxis || (minAxis.MagnitudeSquared() > kRealSmall), "Bogus"); } } } // now try the axis between the center of sphere and center of other box hsVector3 diag(&fCenter, &other.GetCenter()); if( !haveAxis && (diag.MagnitudeSquared() < kRealSmall) ) diag.Set(1.f, 0, 0); float effMin = diag.InnerProduct(fCenter); float effMax = effMin; float velDist = diag.InnerProduct(myVel); if( velDist > 0 ) effMax += velDist; else effMin += velDist; float radDist = fRadius * diag.Magnitude(); effMax += radDist; effMin -= radDist; hsPoint2 otherDepth; other.TestPlane(diag, otherDepth); if( effMax < otherDepth.fX ) return false; if( effMin > otherDepth.fY ) return false; tstAxis = diag; tstDepth = otherDepth.fY - effMin; float magSq = tstAxis.MagnitudeSquared(); if( magSq > 0 ) { tstDepth *= tstDepth * hsInvert(magSq); if( !haveAxis ||(tstDepth < minDepth) ) { minDepth = tstDepth; minAxis = tstAxis; } } float invMag = hsInvert(minAxis.Magnitude()); minAxis *= invMag; hsAssert(minDepth >= 0, "Late to find sep plane"); minDepth = sqrt(minDepth); hit->Set(this, &other, minAxis, minDepth); return true; } bool hsBounds3Ext::ISectBoxBS(const hsBounds3Ext &other, const hsVector3 &myVel) const { if( !(fExtFlags & kSphereSet) ) IMakeSphere(); hsAssert(fBounds3Flags & kCenterValid, "Sphere set but not center (BoxBS)"); if( other.fExtFlags & kAxisAligned ) { // first try the other box axes int i; for( i = 0; i < 3; i++ ) { float effMin = fCenter[i]; float effMax = effMin; float velDist = myVel[i]; if( velDist > 0 ) effMax += velDist; else effMin += velDist; effMax += fRadius; effMin -= fRadius; if( effMax < other.fMins[i] ) return false; if( effMin > other.fMaxs[i] ) return false; } } else { // first try the other box axes if( !(other.fExtFlags & kDistsSet) ) other.IMakeDists(); int i; for( i = 0; i < 3; i++ ) { float effMin = other.fAxes[i].InnerProduct(fCenter); float effMax = effMin; float velDist = other.fAxes[i].InnerProduct(myVel); if( velDist > 0 ) effMax += velDist; else effMin += velDist; float radScaled = fRadius * other.fAxes[i].Magnitude(); effMax += radScaled; effMin -= radScaled; if( effMax < other.fDists[i].fX ) return false; if( effMin > other.fDists[i].fY ) return false; } } // now try the axis between the center of sphere and center of other box hsVector3 diag(&fCenter, &other.GetCenter()); float effMin = diag.InnerProduct(fCenter); float effMax = effMin; float velDist = diag.InnerProduct(myVel); if( velDist > 0 ) effMax += velDist; else effMin += velDist; float radDist = fRadius * diag.Magnitude(); effMax += radDist; effMin -= radDist; hsPoint2 otherDepth; other.TestPlane(diag, otherDepth); if( effMax < otherDepth.fX ) return false; if( effMin > otherDepth.fY ) return false; return true; } bool hsBounds3Ext::ISectLine(const hsPoint3* from, const hsPoint3* at) const { if( !(fExtFlags & kSphereSet) ) IMakeSphere(); hsPoint3 onLine; float z = ClosestPointToLine(&fCenter, from, at, &onLine); float distSq = hsVector3(&onLine, &fCenter).MagnitudeSquared(); if( distSq >= fRadius*fRadius ) return false; if( fExtFlags & kAxisAligned ) { int i; for( i = 0; i < 3; i++ ) { if( ((*from)[i] < fMins[i])&&((*at)[i] < fMins[i]) ) return false; if( ((*from)[i] > fMaxs[i])&&((*at)[i] > fMaxs[i]) ) return false; } } else { if( !(fExtFlags & kDistsSet) ) IMakeDists(); int i; for( i = 0; i < 3; i++ ) { float d0 = fAxes[i].InnerProduct(from); float d1 = fAxes[i].InnerProduct(at); if( d0 < d1 ) { if( d1 < fDists[i].fX ) return false; if( d0 > fDists[i].fY ) return false; } else { if( d0 < fDists[i].fX ) return false; if( d1 > fDists[i].fY ) return false; } } } return true; } bool hsBounds3Ext::ISectCone(const hsPoint3* from, const hsPoint3* at, float radius) const { if( !(fExtFlags & kSphereSet) ) IMakeSphere(); // expensive hsPoint3 onLine; ClosestPointToLine(&fCenter, from, at, &onLine); float distSq = hsVector3(&onLine, &fCenter).MagnitudeSquared(); float radiusSq = fRadius * fRadius; if (distSq - radius*radius >= radiusSq) return false; float dist = hsVector3(from, &onLine).Magnitude(); float len = hsVector3(from, at).Magnitude(); float partRadius = radius/len * dist; if (distSq - fRadius*fRadius - partRadius*partRadius >= 0) { hsVector3 rayToCenter(&fCenter,&onLine); rayToCenter.Normalize(); hsPoint3 atEdge = *at + rayToCenter*radius; ClosestPointToLine(&fCenter, from, &atEdge, &onLine); distSq = hsVector3(&onLine, &fCenter).MagnitudeSquared(); if( distSq >= radiusSq ) return false; } // incorrect if( fExtFlags & kAxisAligned ) { int i; for( i = 0; i < 3; i++ ) { if( ((*from)[i] < fMins[i])&&((*at)[i]+radius < fMins[i]) ) return false; if( ((*from)[i] > fMaxs[i])&&((*at)[i]-radius > fMaxs[i]) ) return false; } } else { if( !(fExtFlags & kDistsSet) ) IMakeDists(); int i; for( i = 0; i < 3; i++ ) { ClosestPointToInfiniteLine(at, &fAxes[i], &onLine); hsVector3 atLine(&onLine,at); atLine.Normalize(); hsPoint3 atEdge = *at + atLine * radius; float d0 = fAxes[i].InnerProduct(*from); float d1 = fAxes[i].InnerProduct(atEdge); if( d0 < d1 ) { if( d1 < fDists[i].fX ) return false; if( d0 > fDists[i].fY ) return false; } else { if( d0 < fDists[i].fX ) return false; if( d1 > fDists[i].fY ) return false; } } } return true; } bool hsBounds3Ext::ISectRayBS(const hsPoint3& from, const hsPoint3& to, hsPoint3& at) const { hsVector3 c2f(&from,&GetCenter()); hsVector3 f2t(&to,&from); float a = f2t.MagnitudeSquared(); float b = 2 * (c2f.InnerProduct(f2t)); float c = c2f.MagnitudeSquared() - GetRadius()*GetRadius(); float disc = b*b - 4*a*c; if (disc < 0) return false; else { float discSqrt = sqrt(disc); float denom = 1.f/(2*a); float t = (-b - discSqrt) * denom; if (t<1 && t>0) at = from + (f2t * t); else return false; #if 0 { t = (-b + discSqrt) * denom; if (t > 1) return false; at = from + (f2t * t); } #endif return true; } } void hsBounds3Ext::Read(hsStream *s) { fExtFlags = s->ReadLE32(); hsBounds3::Read(s); if( !(fExtFlags & kAxisAligned) ) { fCorner.Read(s); int i; for( i = 0; i < 3; i++ ) { fAxes[i].Read(s); fDists[i].fX = s->ReadLEScalar(); fDists[i].fY = s->ReadLEScalar(); } IMakeMinsMaxs(); IMakeDists(); } IMakeSphere(); } void hsBounds3Ext::Write(hsStream *s) { s->WriteLE32(fExtFlags); hsBounds3::Write(s); if( !(fExtFlags & kAxisAligned) ) { fCorner.Write(s); int i; for( i = 0; i < 3; i++ ) { fAxes[i].Write(s); if( fExtFlags & kDistsSet ) { s->WriteLEScalar(fDists[i].fX); s->WriteLEScalar(fDists[i].fY); } else { // Playing nice with binary patches--writing uninited values BAD! s->WriteLEScalar( 0.f ); s->WriteLEScalar( 0.f ); } } } } #if 0 // Commenting out this which will be made redundant and/or obsolete by Havok integration //////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////// void hsBounds3Tri::TestPlane(const hsVector3 &n, hsPoint2 &depth) const { depth.fX = depth.fY = n.InnerProduct(fVerts[0]); float d1, d2; d1 = n.InnerProduct(fVerts[1]); d2 = n.InnerProduct(fVerts[2]); if( d1 > d2 ) { if( d1 > depth.fY ) depth.fY = d1; if( d2 < depth.fX ) depth.fX = d2; } else { if( d2 > depth.fY ) depth.fY = d2; if( d1 < depth.fX ) depth.fX = d1; } } bool hsBounds3Tri::ClosestTriPoint(const hsPoint3 *p, hsPoint3 *out, const hsVector3 *ax) const { // project point onto tri plane hsPoint3 pPln; if( ax ) { float t; t = fNormal.InnerProduct(fVerts[0] - *p); float s = fNormal.InnerProduct(ax); if( (s > hsBounds::kRealSmall)||(s < -hsBounds::kRealSmall) ) { t /= s; pPln = *p; pPln += *ax * t; } else { return ClosestTriPoint(p, out); } } else { float t; t = fNormal.InnerProduct(fVerts[0] - *p); t /= fNormal.MagnitudeSquared(); pPln = *p; pPln += fNormal * t; } if( !(fTriFlags & kAxesSet) ) SetAxes(); int nIn = 0; int firstIn, secondIn; int i; for( i = 0; i < 3; i++ ) { float tst = fPerpAxes[i].InnerProduct(pPln); bool in = false; if( fOnIsMax & (1 << i) ) { if( tst <= fPerpDists[i].fY ) in = true; } else { if( tst >= fPerpDists[i].fX ) in = true; } if( in ) { if( nIn++ ) secondIn = i; else firstIn = i; } } switch( nIn ) { case 3: *out = pPln; break; case 1: { int k, kPlus; k = firstIn == 2 ? 0 : firstIn+1; kPlus = k == 2 ? 0 : k+1; hsPoint3 pTmp; float z; z = hsBounds3::ClosestPointToLine(&pPln, fVerts+k, fVerts+kPlus, &pTmp); if( z <= 1.f ) *out = pTmp; else { k = kPlus; kPlus = k == 2 ? 0 : k+1; z = hsBounds3::ClosestPointToLine(&pPln, fVerts+k, fVerts+kPlus, out); } } break; case 2: { int k, kPlus; k = secondIn == 2 ? 0 : secondIn+1; if( k == firstIn ) k++; kPlus = k == 2 ? 0 : k+1; hsBounds3::ClosestPointToLine(&pPln, fVerts+k, fVerts+kPlus, out); break; } case 0: hsAssert(false, "Extreme bogosity, inverted tri?!?"); *out = pPln; return false; } #ifdef HS_DEBUGGING // mf horse testing #if 0 if( 0 ) { hsVector3 ndeb = hsVector3(fVerts+1, fVerts) % hsVector3(fVerts+2, fVerts); float dis; dis = fNormal.InnerProduct(pPln) - fDist; if( (fDist > hsBounds::kRealSmall)||(fDist < -hsBounds::kRealSmall) ) dis /= fDist; hsAssert((dis < hsBounds::kRealSmall)&&(dis > -hsBounds::kRealSmall), "Non-planar pPln"); dis = hsVector3(&pPln, out).MagnitudeSquared(); float vDis; vDis = hsVector3(&pPln, fVerts+0).MagnitudeSquared(); hsAssert( vDis - dis > -hsBounds::kRealSmall, "Bad closest point"); vDis = hsVector3(&pPln, fVerts+1).MagnitudeSquared(); hsAssert( vDis - dis > -hsBounds::kRealSmall, "Bad closest point"); vDis = hsVector3(&pPln, fVerts+2).MagnitudeSquared(); hsAssert( vDis - dis > -hsBounds::kRealSmall, "Bad closest point"); bool dork = false; if( dork ) { float zn[3]; float zf[3]; float z[3]; int i; for( i = 0; i < 3; i++ ) { z[i] = fPerpAxes[i].InnerProduct(fVerts[i]); int j; j = i == 0 ? 2 : i-1; zf[i] = fPerpAxes[i].InnerProduct(fVerts[j]); j = i == 2 ? 0 : i+1; zn[i] = fPerpAxes[i].InnerProduct(fVerts[j]); } return ClosestTriPoint(p, out, ax); } } #endif #endif return 3 == nIn; } void hsBounds3Tri::SetAxes() const { fOnIsMax = 0; hsVector3 edge[3]; edge[0].Set(fVerts, fVerts+1); edge[1].Set(fVerts+1, fVerts+2); edge[2].Set(fVerts+2, fVerts); hsVector3 perp = edge[2] % edge[0]; int i; for( i = 0; i < 3; i++ ) { int j = i == 2 ? 0 : i+1; int k = j == 2 ? 0 : j+1; fPerpAxes[i] = edge[i] % perp; fPerpAxes[i].Normalize(); fPerpDists[i].fX = fPerpAxes[i].InnerProduct(fVerts[i]); fPerpDists[i].fY = fPerpAxes[i].InnerProduct(fVerts[k]); if( fPerpDists[i].fX > fPerpDists[i].fY ) { fOnIsMax |= 1 << i; float d = fPerpDists[i].fX; fPerpDists[i].fX = fPerpDists[i].fY; fPerpDists[i].fY = d; } } fTriFlags |= kAxesSet; } hsBounds3Tri* hsBounds3Tri::Transform(const hsMatrix44& x) { #if 0 // IDENT if( x.fFlags & hsMatrix44::kIsIdent ) return this; #endif // IDENT fVerts[0] = x * fVerts[0]; fVerts[1] = x * fVerts[1]; fVerts[2] = x * fVerts[2]; hsVector3 v1, v2; v1.Set(&fVerts[1], &fVerts[0]); v2.Set(&fVerts[2], &fVerts[0]); fNormal = v1 % v2; // mf horse - do we need to normalize here? // fNormal.Normalize(); fDist = fNormal.InnerProduct(fVerts[0]); fTriFlags &= ~kAxesSet; SetAxes(); return this; } hsBounds3Tri* hsBounds3Tri::Translate(const hsVector3& v) { fVerts[0] += v; fVerts[1] += v; fVerts[2] += v; fDist = fNormal.InnerProduct(fVerts[0]); int i; for( i = 0; i < 3; i++ ) { int j = i == 2 ? 0 : i+1; int k = j == 2 ? 0 : j+1; float del = fPerpAxes[i].InnerProduct(v); fPerpDists[i].fX += del; fPerpDists[i].fY += del; } return this; } void hsBounds3Tri::Set(const hsPoint3& v0, const hsPoint3& v1, const hsPoint3& v2, hsTriangle3* t, const hsMatrix44& x) { fVerts[0] = v0; fVerts[1] = v1; fVerts[2] = v2; fOnIsMax = 0; fTriangle = t; if( t->fFlags & hsTriangle3::kTwoSided ) fTriFlags |= kDoubleSide; #if 0 // IDENT if( x.fFlags & hsMatrix44::kIsIdent ) { hsVector3 v1, v2; v1.Set(&fVerts[1], &fVerts[0]); v2.Set(&fVerts[2], &fVerts[0]); fNormal = v1 % v2; // mf horse - do we need to normalize here? // fNormal.Normalize(); fDist = fNormal.InnerProduct(fVerts[0]); fTriFlags &= ~kAxesSet; SetAxes(); } else #endif // IDENT Transform(x); } hsBounds3Tri::hsBounds3Tri(const hsPoint3& v0, const hsPoint3& v1, const hsPoint3& v2, hsTriangle3* t, const hsMatrix44& x) { Set(v0, v1, v2, t, x); } hsBounds3Tri::hsBounds3Tri(hsTriangle3* t, const hsMatrix44& x) { Set(t->fVert[0]->fVtx->fLocalPos, t->fVert[2]->fVtx->fLocalPos, t->fVert[2]->fVtx->fLocalPos, t, x); } void hsBounds3Tri::Set(hsPoint3 *v0, hsPoint3 *v1, hsPoint3 *v2, hsVector3 *n, uint32_t triFlags, hsTriangle3 *t) { fTriFlags = 0; if( triFlags & hsTriangle3::kTwoSided ) fTriFlags |= kDoubleSide; fNormal = *n; fVerts[0] = *v0; fVerts[1] = *v1; fVerts[2] = *v2; fOnIsMax = 0; fTriangle = t; fDist = fNormal.InnerProduct(fVerts[0]); } hsBounds3Tri::hsBounds3Tri(hsPoint3 *v0, hsPoint3 *v1, hsPoint3 *v2, hsVector3 *n, uint32_t triFlags, hsTriangle3 *t) { Set(v0, v1, v2, n, triFlags, t); } hsBounds3Tri::hsBounds3Tri(hsTriangle3* t) { Set(&t->fVert[0]->fVtx->fLocalPos, &t->fVert[1]->fVtx->fLocalPos, &t->fVert[2]->fVtx->fLocalPos, &t->fNormal, t->fFlags, t); } hsBounds3Tri::~hsBounds3Tri() { } // Finds closest intersection vertex or triangle/center-line intersection bool hsBounds3Tri::ISectCone(const hsPoint3& from, const hsPoint3& to, float cosThetaSq, bool ignoreFacing, hsPoint3& at, bool& backSide) const { float d0 = from.InnerProduct(fNormal); float d1 = at.InnerProduct(fNormal); float dt = fNormal.InnerProduct(fVerts[0]); backSide = d0 < dt; if( !ignoreFacing && backSide ) return false; if ( (d0 < dt || d1 < dt) && (d0 > dt || d1 > dt) && ClosestTriPoint(&from, &at, &hsVector3(&to,&from)) ) return true; hsVector3 av(&to,&from); float distASq = av.MagnitudeSquared(); float radiusSq = distASq * (1-cosThetaSq)/cosThetaSq; float minDistSq = 0; int32_t minVert = 0; bool sect = false; for (int32_t i=0; i<3; i++) { hsPoint3 onLine; float t = hsBounds3::ClosestPointToLine(&fVerts[i], &from, &to, &onLine); // outside the cap of the cylinder if (t<0 || t>1) continue; // outside the edge of the cylinder if (hsVector3(&onLine, &fVerts[i]).MagnitudeSquared() >= radiusSq) continue; hsVector3 bv(&fVerts[i],&from); float distBSq = bv.MagnitudeSquared(); float cosMuSquared = (av * bv) / (distASq * distBSq); // outside the angle of the cone if (cosMuSquared > cosThetaSq) continue; if (!sect || distBSq < minDistSq) { minVert = i; minDistSq = distBSq; sect = true; } } at = fVerts[minVert]; return sect; } #endif // Commenting out this which will be made redundant and/or obsolete by Havok integration