/*==LICENSE==*

CyanWorlds.com Engine - MMOG client, server and tools
Copyright (C) 2011  Cyan Worlds, Inc.

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.

Additional permissions under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or
combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK,
NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent
JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK
(or a modified version of those libraries),
containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA,
PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG
JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the
licensors of this Program grant you additional
permission to convey the resulting work. Corresponding Source for a
non-source form of such a combination shall include the source code for
the parts of OpenSSL and IJG JPEG Library used as well as that of the covered
work.

You can contact Cyan Worlds, Inc. by email legal@cyan.com
 or by snail mail at:
      Cyan Worlds, Inc.
      14617 N Newport Hwy
      Mead, WA   99021

*==LICENSE==*/
#include "HeadSpin.h"
#include "hsInterp.h"
#include "plTransform/hsAffineParts.h"
#include "hsColorRGBA.h"
#include "hsPoint2.h"

//
///////////////////////////////////////////////////////
// linear interpolation
///////////////////////////////////////////////////////
//
void hsInterp::LinInterp(float k1, float k2, float t, float* result)
{
    *result = k1 + t * (k2 - k1);
}

void hsInterp::LinInterp(const hsScalarTriple* k1, const hsScalarTriple* k2, float t, 
                      hsScalarTriple* result)
{
    if (t==0.0)
        *result = *k1;
    else
    if (t==1.0)
        *result = *k2;
    else
    {
        LinInterp(k1->fX, k2->fX, t, &result->fX);
        LinInterp(k1->fY, k2->fY, t, &result->fY);
        LinInterp(k1->fZ, k2->fZ, t, &result->fZ);
    }
}

void hsInterp::LinInterp(const hsColorRGBA* k1, const hsColorRGBA* k2, float t, 
                      hsColorRGBA* result, uint32_t flags)
{
    if (t==0.0)
    {
        // copy
        result->r = k1->r;
        result->g = k1->g;
        result->b = k1->b;
        if (!(flags & kIgnoreAlpha))
            result->a = k1->a;
        return;
    }

    if (t==1.0)
    {
        result->r = k2->r;
        result->g = k2->g;
        result->b = k2->b;
        if (!(flags & kIgnoreAlpha))
            result->a = k2->a;
        return;
    }
    
    LinInterp(k1->r, k2->r, t, &result->r);
    LinInterp(k1->g, k2->g, t, &result->g);
    LinInterp(k1->b, k2->b, t, &result->b);
    if (!(flags & kIgnoreAlpha))
        LinInterp(k1->a, k2->a, t, &result->a);
}

void hsInterp::LinInterp(const hsMatrix33* k1, const hsMatrix33* k2, float t, 
                      hsMatrix33* result, uint32_t flags)
{
    if (t==0.0)
    {
        // copy
        result->fMap[0][0] = k1->fMap[0][0];
        result->fMap[0][1] = k1->fMap[0][1];
        result->fMap[0][2] = k1->fMap[0][2];

        result->fMap[1][0] = k1->fMap[1][0];
        result->fMap[1][1] = k1->fMap[1][1];
        result->fMap[1][2] = k1->fMap[1][2];

        if (!(flags & kIgnoreLastMatRow))
        {
            result->fMap[2][0] = k1->fMap[2][0];
            result->fMap[2][1] = k1->fMap[2][1];
            result->fMap[2][2] = k1->fMap[2][2];
        }
        return;
    }
    if (t==1.0)
    {
        // copy
        result->fMap[0][0] = k2->fMap[0][0];
        result->fMap[0][1] = k2->fMap[0][1];
        result->fMap[0][2] = k2->fMap[0][2];

        result->fMap[1][0] = k2->fMap[1][0];
        result->fMap[1][1] = k2->fMap[1][1];
        result->fMap[1][2] = k2->fMap[1][2];

        if (!(flags & kIgnoreLastMatRow))
        {
            result->fMap[2][0] = k2->fMap[2][0];
            result->fMap[2][1] = k2->fMap[2][1];
            result->fMap[2][2] = k2->fMap[2][2];
        }
        return;
    }

    LinInterp(k1->fMap[0][0], k2->fMap[0][0], t, &result->fMap[0][0]);
    LinInterp(k1->fMap[0][1], k2->fMap[0][1], t, &result->fMap[0][1]);
    LinInterp(k1->fMap[0][2], k2->fMap[0][2], t, &result->fMap[0][2]);

    LinInterp(k1->fMap[1][0], k2->fMap[1][0], t, &result->fMap[1][0]);
    LinInterp(k1->fMap[1][1], k2->fMap[1][1], t, &result->fMap[1][1]);
    LinInterp(k1->fMap[1][2], k2->fMap[1][2], t, &result->fMap[1][2]);

    if (!(flags & kIgnoreLastMatRow))
    {
        LinInterp(k1->fMap[2][0], k2->fMap[2][0], t, &result->fMap[2][0]);
        LinInterp(k1->fMap[2][1], k2->fMap[2][1], t, &result->fMap[2][1]);
        LinInterp(k1->fMap[2][2], k2->fMap[2][2], t, &result->fMap[2][2]);
    }
}

//
//
void hsInterp::LinInterp(const hsMatrix44* mat1, const hsMatrix44* mat2, float t, 
                      hsMatrix44* out, uint32_t flags)
{
    if (flags == 0)
    {
        if( 0 == t )
        {
            *out = *mat1;
            return;
        }

        if( 1.f == t )
        {
            *out = *mat2;
            return;
        }
    }

    if( flags & kIgnorePartsScale )
    {
        if (!(flags & kIgnorePartsRot))
        {
            // interp rotation with quats
            hsQuat q1, q2, qOut;
            q1.SetFromMatrix(mat1);
            q2.SetFromMatrix(mat2);
            LinInterp(&q1, &q2, t, &qOut);
            
            qOut.Normalize();
            qOut.MakeMatrix(out);
        }
        else
            out->Reset();
#if 1
        hsAssert(mat2->fMap[3][0]==0 && mat2->fMap[3][1]==0 && mat2->fMap[3][2]==0 && mat2->fMap[3][3]==1,
            "matrix prob?");
#else
        // copy 
        for(int i=0; i<3; i++)
            out->fMap[3][i] = mat2->fMap[3][i];
#endif
        
        if (!(flags & kIgnorePartsPos))
        {
            // interp translation
            hsPoint3 p1,p2,pOut;
            mat1->GetTranslate(&p1);
            mat2->GetTranslate(&p2);
            LinInterp(&p1, &p2, t, &pOut);
            out->SetTranslate(&pOut);
            out->NotIdentity();     // in case no rot
        }
    }
    else
    {
        // Complete decomp and parts interp

        gemAffineParts gemParts1, gemParts2;
        hsAffineParts parts1, parts2, partsOut;
    
        decomp_affine(mat1->fMap, &gemParts1); 
        AP_SET(parts1, gemParts1);

        decomp_affine(mat2->fMap, &gemParts2); 
        AP_SET(parts2, gemParts2);

        LinInterp(&parts1, &parts2, t, &partsOut, flags);   // flags will be parsed here

        partsOut.ComposeMatrix(out);
    }
}

void hsInterp::LinInterp(const hsQuat* k1, const hsQuat* k2, float t, hsQuat* result)
{
    if (t==0.0)
        *result = *k1;
    else
    if (t==1.0)
        *result = *k2;
    else
    {
        result->SetFromSlerp(*k1, *k2, t);
    }
}

void hsInterp::LinInterp(const hsScaleValue* k1, const hsScaleValue* k2, float t, 
                      hsScaleValue* result)
{
    LinInterp(&k1->fS, &k2->fS, t, &result->fS);    // Stretch rotation 
    LinInterp(&k1->fQ, &k2->fQ, t, &result->fQ);    // Stretch factor   
}

void hsInterp::LinInterp(const hsAffineParts* k1, const hsAffineParts* k2, float t, 
                      hsAffineParts* result, uint32_t flags)
{       
    if (t==0.0)
    {
        // copy
        if (!(flags & kIgnorePartsPos))
            result->fT = k1->fT;
        if (!(flags & kIgnorePartsRot))
            result->fQ = k1->fQ;
        if (!(flags & kIgnorePartsScale))
        {
            // same as preserveScale
            result->fU = k1->fU;
            result->fK = k1->fK;
        }
        result->fF = k1->fF;

        return;
    }
    
    if (flags & kPreservePartsScale)
    {
        result->fU = k1->fU;    // just copy scale from 1st key
        result->fK = k1->fK;
    }

    if (t==1.0)
    {
        // copy
        if (!(flags & kIgnorePartsPos))
            result->fT = k2->fT;
        if (!(flags & kIgnorePartsRot))
            result->fQ = k2->fQ;
        if (!(flags & (kIgnorePartsScale | kPreservePartsScale)))
        {
            result->fU = k2->fU;
            result->fK = k2->fK;
        }
        result->fF = k2->fF;

        return;
    }
    
    if(k1->fF!=k2->fF)
        hsStatusMessageF("WARNING: Inequality in affine parts flip value.");

//  hsAssert(k1->fF==k2->fF, "inequality in affine parts flip value");
    if (!(flags & kIgnorePartsPos))
        LinInterp(&k1->fT, &k2->fT, t, &result->fT);    // Translation
    if (!(flags & kIgnorePartsRot))
    {
        LinInterp(&k1->fQ, &k2->fQ, t, &result->fQ);    // Essential rotation   
    }
    
    if (!(flags & (kIgnorePartsScale | kPreservePartsScale)))
    {
        LinInterp(&k1->fU, &k2->fU, t, &result->fU);    // Stretch rotation 
        LinInterp(&k1->fK, &k2->fK, t, &result->fK);    // Stretch factor   
    }

#if 0
    if (!(flags & kIgnorePartsDet))
        LinInterp(k1->fF, k2->fF, t, &result->fF);  // Flip rot var
#else
    result->fF = k1->fF;
#endif
}

//
///////////////////////////////////////////////////////
// Key interpolation
///////////////////////////////////////////////////////
//

void hsInterp::BezScalarEval(const float value1, const float outTan,
                             const float value2, const float inTan,
                             const float t, const float tanScale, float *result)
{
#if 0
    // If the tangents were what you'd expect them to be... Hermite splines, than this code
    // would make sense. But no, Max likes to store them in a scaled form based on the
    // time of each frame. If we ever optimize this further, we could do the scaling on export,
    // but I need this to work right now before all the artists hate me too much.
    const float t2 = t * t;
    const float t3 = t2 * t;

    const float term1 = 2 * t3 - 3 * t2;

    *result = ((term1 + 1) * value1) +
        (-term1 * value2) +
        ((t3 - 2 * t2 + 1) * outTan) +
        ((t3 - t2) * inTan);
#else
    const float oneMinusT = (1.0f - t);
    const float tSq = t * t;
    const float oneMinusTSq = oneMinusT * oneMinusT;

    *result = (oneMinusT * oneMinusTSq * value1) +
        (3.f * t * oneMinusTSq * (value1 + outTan * tanScale)) +
        (3.f * tSq * oneMinusT * (value2 + inTan * tanScale)) +
        (tSq * t * value2);
#endif
}

void hsInterp::BezInterp(const hsBezPoint3Key* k1, const hsBezPoint3Key* k2, const float t, hsScalarTriple* result)
{
    float scale = (k2->fFrame - k1->fFrame) * MAX_TICKS_PER_FRAME / 3.f;
    BezScalarEval(k1->fValue.fX, k1->fOutTan.fX, k2->fValue.fX, k2->fInTan.fX, t, scale, &result->fX);
    BezScalarEval(k1->fValue.fY, k1->fOutTan.fY, k2->fValue.fY, k2->fInTan.fY, t, scale, &result->fY);
    BezScalarEval(k1->fValue.fZ, k1->fOutTan.fZ, k2->fValue.fZ, k2->fInTan.fZ, t, scale, &result->fZ);
}

void hsInterp::BezInterp(const hsBezScalarKey* k1, const hsBezScalarKey* k2, const float t, float* result)
{
    float scale = (k2->fFrame - k1->fFrame) * MAX_TICKS_PER_FRAME / 3.f;
    BezScalarEval(k1->fValue, k1->fOutTan, k2->fValue, k2->fInTan, t, scale, result);
}

void hsInterp::BezInterp(const hsBezScaleKey* k1, const hsBezScaleKey* k2, const float t, hsScaleValue* result)
{
    float scale = (k2->fFrame - k1->fFrame) * MAX_TICKS_PER_FRAME / 3.f;
    BezScalarEval(k1->fValue.fS.fX, k1->fOutTan.fX, k2->fValue.fS.fX, k2->fInTan.fX, t, scale, &result->fS.fX);
    BezScalarEval(k1->fValue.fS.fY, k1->fOutTan.fY, k2->fValue.fS.fY, k2->fInTan.fY, t, scale, &result->fS.fY);
    BezScalarEval(k1->fValue.fS.fZ, k1->fOutTan.fZ, k2->fValue.fS.fZ, k2->fInTan.fZ, t, scale, &result->fS.fZ); 

    // Slerp scale axis
    LinInterp(&k1->fValue.fQ, &k2->fValue.fQ, t, &result->fQ);
}

//
// Get an element from an array of unknown type
//
static inline hsKeyFrame* GetKey(int32_t i, void *keys, int32_t size)
{
    return (hsKeyFrame*) ((char*)keys + size * i);
}

//
// STATIC
// Given a list of keys, and a time, fills in the 2 boundary keys and 
// a fraction (p=0-1) indicating where the time falls between them.
// Returns the index of the first key which can be passed in as a hint (lastKeyIdx)
// for the next search.
//
void hsInterp::GetBoundaryKeyFrames(float time, uint32_t numKeys, void *keys, uint32_t size,
                                    hsKeyFrame **kF1, hsKeyFrame **kF2, uint32_t *lastKeyIdx, float *p, bool forwards)
{
    hsAssert(numKeys>1, "Must have more than 1 keyframe");
    int k1, k2;
    uint16_t frame = (uint16_t)(time * MAX_FRAMES_PER_SEC);

    // boundary case, past end
    if (frame > GetKey(numKeys-1, keys, size)->fFrame)
    {
        k1=k2=numKeys-1;
        (*kF2) = GetKey(k1, keys, size);
        (*kF1) = (*kF2);
        *p = 0.0;
        goto ret;
    }

    hsKeyFrame *key1, *key2;
    // boundary case, before start
    if (frame < (key1=GetKey(0, keys, size))->fFrame)
    {
        k1=k2=0;
        (*kF1) = GetKey(k1, keys, size);
        (*kF2) = (*kF1);
        *p = 0.0;
        goto ret;
    }

    // prime loop
    int i;
    i = 1;
    if (*lastKeyIdx > 0 && *lastKeyIdx < numKeys - 1)
    {
        // new starting point for search
        if (forwards)
            key1 = GetKey(*lastKeyIdx, keys, size);
        else
            key2 = GetKey(*lastKeyIdx + 1, keys, size);

        i = *lastKeyIdx + 1;
    }
    else if (!forwards)
    {
        key2 = GetKey(1, keys, size);
    }

    // search pairs of keys
    int count;
    if (forwards)
    {
        for (count = 1; count <= numKeys; count++, i++)
        {
            if (i >= numKeys)
            {
                key1 = GetKey(0, keys, size);
                i = 1;
                count++;
            }
                
            key2 = GetKey(i, keys, size);
            if (frame <= key2->fFrame && frame >= key1->fFrame)
            {
                k2=i;
                k1=i-1;
                (*kF2) = key2;
                (*kF1) = key1;
                *p = (time - (*kF1)->fFrame / MAX_FRAMES_PER_SEC) / (((*kF2)->fFrame - (*kF1)->fFrame) / MAX_FRAMES_PER_SEC);
                goto ret;
            }
            key1=key2;
        }
    }
    else
    {
        for (count = 1; count <= numKeys; count++, i--)
        {
            if (i < 1)
            {
                i = numKeys - 1;
                key2 = GetKey(i, keys, size);
                count++;
            }
            
            key1 = GetKey(i - 1, keys, size);
            if (frame <= key2->fFrame && frame >= key1->fFrame)
            {
                k2 = i;
                k1 = i - 1;
                (*kF2) = key2;
                (*kF1) = key1;
                *p = (time - (*kF1)->fFrame / MAX_FRAMES_PER_SEC) / (((*kF2)->fFrame - (*kF1)->fFrame) / MAX_FRAMES_PER_SEC);
                goto ret;
            }
            key2=key1;
        }
    }       

ret:
;

#if 0
    char str[128];
    sprintf(str, "k1=%d, k2=%d, p=%f\n", k1, k2, *p);
    OutputDebugString(str);
#endif
    *lastKeyIdx = k1;
}