"""A generic class to build line-oriented command interpreters. Interpreters constructed with this class obey the following conventions: 1. End of file on input is processed as the command 'EOF'. 2. A command is parsed out of each line by collecting the prefix composed of characters in the identchars member. 3. A command `foo' is dispatched to a method 'do_foo()'; the do_ method is passed a single argument consisting of the remainder of the line. 4. Typing an empty line repeats the last command. (Actually, it calls the method `emptyline', which may be overridden in a subclass.) 5. There is a predefined `help' method. Given an argument `topic', it calls the command `help_topic'. With no arguments, it lists all topics with defined help_ functions, broken into up to three topics; documented commands, miscellaneous help topics, and undocumented commands. 6. The command '?' is a synonym for `help'. The command '!' is a synonym for `shell', if a do_shell method exists. 7. If completion is enabled, completing commands will be done automatically, and completing of commands args is done by calling complete_foo() with arguments text, line, begidx, endidx. text is string we are matching against, all returned matches must begin with it. line is the current input line (lstripped), begidx and endidx are the beginning and end indexes of the text being matched, which could be used to provide different completion depending upon which position the argument is in. The `default' method may be overridden to intercept commands for which there is no do_ method. The `completedefault' method may be overridden to intercept completions for commands that have no complete_ method. The data member `self.ruler' sets the character used to draw separator lines in the help messages. If empty, no ruler line is drawn. It defaults to "=". If the value of `self.intro' is nonempty when the cmdloop method is called, it is printed out on interpreter startup. This value may be overridden via an optional argument to the cmdloop() method. The data members `self.doc_header', `self.misc_header', and `self.undoc_header' set the headers used for the help function's listings of documented functions, miscellaneous topics, and undocumented functions respectively. These interpreters use raw_input; thus, if the readline module is loaded, they automatically support Emacs-like command history and editing features. """ import string, sys __all__ = ["Cmd"] PROMPT = '(Cmd) ' IDENTCHARS = string.ascii_letters + string.digits + '_' class Cmd: """A simple framework for writing line-oriented command interpreters. These are often useful for test harnesses, administrative tools, and prototypes that will later be wrapped in a more sophisticated interface. A Cmd instance or subclass instance is a line-oriented interpreter framework. There is no good reason to instantiate Cmd itself; rather, it's useful as a superclass of an interpreter class you define yourself in order to inherit Cmd's methods and encapsulate action methods. """ prompt = PROMPT identchars = IDENTCHARS ruler = '=' lastcmd = '' cmdqueue = [] intro = None doc_leader = "" doc_header = "Documented commands (type help ):" misc_header = "Miscellaneous help topics:" undoc_header = "Undocumented commands:" nohelp = "*** No help on %s" use_rawinput = 1 def __init__(self, completekey='tab'): """Instantiate a line-oriented interpreter framework. The optional argument is the readline name of a completion key; it defaults to the Tab key. If completekey is not None and the readline module is available, command completion is done automatically. """ if completekey: try: import readline readline.set_completer(self.complete) readline.parse_and_bind(completekey+": complete") except ImportError: pass def cmdloop(self, intro=None): """Repeatedly issue a prompt, accept input, parse an initial prefix off the received input, and dispatch to action methods, passing them the remainder of the line as argument. """ self.preloop() if intro is not None: self.intro = intro if self.intro: print self.intro stop = None while not stop: if self.cmdqueue: line = self.cmdqueue[0] del self.cmdqueue[0] else: if self.use_rawinput: try: line = raw_input(self.prompt) except EOFError: line = 'EOF' else: sys.stdout.write(self.prompt) sys.stdout.flush() line = sys.stdin.readline() if not len(line): line = 'EOF' else: line = line[:-1] # chop \n line = self.precmd(line) stop = self.onecmd(line) stop = self.postcmd(stop, line) self.postloop() def precmd(self, line): """Hook method executed just before the command line is interpreted, but after the input prompt is generated and issued. """ return line def postcmd(self, stop, line): """Hook method executed just after a command dispatch is finished.""" return stop def preloop(self): """Hook method executed once when the cmdloop() method is called.""" pass def postloop(self): """Hook method executed once when the cmdloop() method is about to return. """ pass def parseline(self, line): line = line.strip() if not line: return None, None, line elif line[0] == '?': line = 'help ' + line[1:] elif line[0] == '!': if hasattr(self, 'do_shell'): line = 'shell ' + line[1:] else: return None, None, line i, n = 0, len(line) while i < n and line[i] in self.identchars: i = i+1 cmd, arg = line[:i], line[i:].strip() return cmd, arg, line def onecmd(self, line): """Interpret the argument as though it had been typed in response to the prompt. This may be overridden, but should not normally need to be; see the precmd() and postcmd() methods for useful execution hooks. The return value is a flag indicating whether interpretation of commands by the interpreter should stop. """ cmd, arg, line = self.parseline(line) if not line: return self.emptyline() if cmd is None: return self.default(line) self.lastcmd = line if cmd == '': return self.default(line) else: try: func = getattr(self, 'do_' + cmd) except AttributeError: return self.default(line) return func(arg) def emptyline(self): """Called when an empty line is entered in response to the prompt. If this method is not overridden, it repeats the last nonempty command entered. """ if self.lastcmd: return self.onecmd(self.lastcmd) def default(self, line): """Called on an input line when the command prefix is not recognized. If this method is not overridden, it prints an error message and returns. """ print '*** Unknown syntax:', line def completedefault(self, *ignored): """Method called to complete an input line when no command-specific complete_*() method is available. By default, it returns an empty list. """ return [] def completenames(self, text, *ignored): dotext = 'do_'+text return [a[3:] for a in self.get_names() if a.startswith(dotext)] def complete(self, text, state): """Return the next possible completion for 'text'. If a command has not been entered, then complete against command list. Otherwise try to call complete_ to get list of completions. """ if state == 0: import readline origline = readline.get_line_buffer() line = origline.lstrip() stripped = len(origline) - len(line) begidx = readline.get_begidx() - stripped endidx = readline.get_endidx() - stripped if begidx>0: cmd, args, foo = self.parseline(line) if cmd == '': compfunc = self.completedefault else: try: compfunc = getattr(self, 'complete_' + cmd) except AttributeError: compfunc = self.completedefault else: compfunc = self.completenames self.completion_matches = compfunc(text, line, begidx, endidx) try: return self.completion_matches[state] except IndexError: return None def get_names(self): # Inheritance says we have to look in class and # base classes; order is not important. names = [] classes = [self.__class__] while classes: aclass = classes[0] if aclass.__bases__: classes = classes + list(aclass.__bases__) names = names + dir(aclass) del classes[0] return names def complete_help(self, *args): return self.completenames(*args) def do_help(self, arg): if arg: # XXX check arg syntax try: func = getattr(self, 'help_' + arg) except: try: doc=getattr(self, 'do_' + arg).__doc__ if doc: print doc return except: pass print self.nohelp % (arg,) return func() else: names = self.get_names() cmds_doc = [] cmds_undoc = [] help = {} for name in names: if name[:5] == 'help_': help[name[5:]]=1 names.sort() # There can be duplicates if routines overridden prevname = '' for name in names: if name[:3] == 'do_': if name == prevname: continue prevname = name cmd=name[3:] if help.has_key(cmd): cmds_doc.append(cmd) del help[cmd] elif getattr(self, name).__doc__: cmds_doc.append(cmd) else: cmds_undoc.append(cmd) print self.doc_leader self.print_topics(self.doc_header, cmds_doc, 15,80) self.print_topics(self.misc_header, help.keys(),15,80) self.print_topics(self.undoc_header, cmds_undoc, 15,80) def print_topics(self, header, cmds, cmdlen, maxcol): if cmds: print header if self.ruler: print self.ruler * len(header) (cmds_per_line,junk)=divmod(maxcol,cmdlen) col=cmds_per_line for cmd in cmds: if col==0: print print (("%-"+`cmdlen`+"s") % cmd), col = (col+1) % cmds_per_line print "\n"