/*==LICENSE==*

CyanWorlds.com Engine - MMOG client, server and tools
Copyright (C) 2011  Cyan Worlds, Inc.

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.

You can contact Cyan Worlds, Inc. by email legal@cyan.com
 or by snail mail at:
      Cyan Worlds, Inc.
      14617 N Newport Hwy
      Mead, WA   99021

*==LICENSE==*/
#include "hsTypes.h"
#include "hsGeometry3.h"
#include "hsMatrix44.h"
#include "plConvexVolume.h"
#include "hsStream.h"

plConvexVolume::plConvexVolume()
{
    //fFlags = nil;
    fLocalPlanes = nil;
    fWorldPlanes = nil;
    fNumPlanes = 0;
}

plConvexVolume::~plConvexVolume()
{
    IClear();
}

void plConvexVolume::IClear()
{
    //delete [] fFlags;
    delete [] fLocalPlanes;
    delete [] fWorldPlanes;
}

hsBool plConvexVolume::AddPlane(const hsPlane3 &plane)
{
    // First check for a redundant plane (since we're convex, a comparison of normals should do)
    int i;
    // Start the comparison with the most recently added plane, it's most likely to match
    for (i = fNumPlanes - 1; i >= 0; i--)
    {
        const float MIN_COS_THETA = 0.99999f; // translates to < 0.25 degree angle
        // If the angle betwen the normals is close enough, count them as equal.        
        if (fLocalPlanes[i].fN.InnerProduct(plane.fN) >= MIN_COS_THETA)
            return false; // no need to add it
    }
    fNumPlanes++;
    //delete [] fFlags;
    //fFlags = TRACKED_NEW UInt32[fNumPlanes];

    hsPlane3 *tempPlanes = TRACKED_NEW hsPlane3[fNumPlanes];
    for (i = 0; i < fNumPlanes - 1; i++)
    {
        tempPlanes[i] = fLocalPlanes[i];
    }
    tempPlanes[fNumPlanes - 1] = plane;

    delete [] fLocalPlanes;
    fLocalPlanes = tempPlanes;
    delete [] fWorldPlanes;
    fWorldPlanes = TRACKED_NEW hsPlane3[fNumPlanes];
    
    return true;
}

void plConvexVolume::Update(const hsMatrix44 &l2w)
{
    int i;
    hsPoint3 planePt;
    for (i = 0; i < fNumPlanes; i++)
    {
        // Since fN is an hsVector3, it will only apply the rotational aspect of the transform...
        fWorldPlanes[i].fN = l2w * fLocalPlanes[i].fN; 
        planePt.Set(&(fLocalPlanes[i].fN * fLocalPlanes[i].fD));
        fWorldPlanes[i].fD = -(l2w * planePt).InnerProduct(fWorldPlanes[i].fN);
    }
}

void plConvexVolume::SetNumPlanesAndClear(const UInt32 num)
{
    IClear();
    //fFlags = TRACKED_NEW UInt32[num];
    fLocalPlanes = TRACKED_NEW hsPlane3[num];
    fWorldPlanes = TRACKED_NEW hsPlane3[num];
    fNumPlanes = num;
}

void plConvexVolume::SetPlane(const hsPlane3 &plane, const UInt32 index)
{
    fLocalPlanes[index] = plane;
}

hsBool plConvexVolume::IsInside(const hsPoint3 &pos) const
{
    int i;
    for( i = 0; i < fNumPlanes; i++ )
    {
        if (!TestPlane(pos, fWorldPlanes[i]))
            return false;
    }

    return true;
}

hsBool plConvexVolume::ResolvePoint(hsPoint3 &pos) const
{
    hsScalar minDist = 1.e33f;
    Int32 minIndex = -1;

    hsScalar currDist;
    int i;
    for (i = 0; i < fNumPlanes; i++)
    {
        currDist = -fWorldPlanes[i].fD - fWorldPlanes[i].fN.InnerProduct(pos);
        if (currDist < 0)
            return false; // We're not inside this plane, and thus outside the volume

        if (currDist < minDist)
        {
            minDist = currDist;
            minIndex = i;
        }
    }
    pos += (-fWorldPlanes[minIndex].fD - fWorldPlanes[minIndex].fN.InnerProduct(pos)) * fWorldPlanes[minIndex].fN;
    return true;
}

hsBool plConvexVolume::BouncePoint(hsPoint3 &pos, hsVector3 &velocity, hsScalar bounce, hsScalar friction) const
{
    hsScalar minDist = 1.e33f;
    Int32 minIndex = -1;

    hsScalar currDist;
    int i;
    for (i = 0; i < fNumPlanes; i++)
    {
        currDist = -fWorldPlanes[i].fD - fWorldPlanes[i].fN.InnerProduct(pos);
        if (currDist < 0)
            return false; // We're not inside this plane, and thus outside the volume

        if (currDist < minDist)
        {
            minDist = currDist;
            minIndex = i;
        }
    }
    pos += (-fWorldPlanes[minIndex].fD - fWorldPlanes[minIndex].fN.InnerProduct(pos)) * fWorldPlanes[minIndex].fN;
    hsVector3 bnc = -velocity.InnerProduct(fWorldPlanes[minIndex].fN) * fWorldPlanes[minIndex].fN;
    velocity += bnc;
    velocity *= 1.f - friction;
    velocity += bnc * bounce;
//  velocity += (velocity.InnerProduct(fWorldPlanes[minIndex].fN) * -(1.f + bounce)) * fWorldPlanes[minIndex].fN;
    return true;
}

void plConvexVolume::Read(hsStream* s, hsResMgr *mgr)
{
    SetNumPlanesAndClear(s->ReadSwap32());
    int i;
    for (i = 0; i < fNumPlanes; i++)
    {
        fLocalPlanes[i].Read(s);
        //fFlags[i] = s->ReadSwap32();
    }
}

void plConvexVolume::Write(hsStream* s, hsResMgr *mgr)
{
    s->WriteSwap32(fNumPlanes);
    int i;
    for (i = 0; i < fNumPlanes; i++)
    {
        fLocalPlanes[i].Write(s);
        //s->WriteSwap32(fFlags[i]);
    }
}