/*==LICENSE==*

CyanWorlds.com Engine - MMOG client, server and tools
Copyright (C) 2011  Cyan Worlds, Inc.

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.

You can contact Cyan Worlds, Inc. by email legal@cyan.com
 or by snail mail at:
      Cyan Worlds, Inc.
      14617 N Newport Hwy
      Mead, WA   99021

*==LICENSE==*/

#include "hsTypes.h"
#include "plAccMeshSmooth.h"

#include "plGeometrySpan.h"
#include "plAccessGeometry.h"
#include "plAccessTriSpan.h"

#include "hsFastMath.h"

class EdgeBin
{
public:
	UInt16	fVtx;
	UInt16	fCount;

	EdgeBin() : fVtx(0), fCount(0) {}
};

void plAccMeshSmooth::FindEdges(UInt32 maxVtxIdx, UInt32 nTris, UInt16* idxList, hsTArray<UInt16>& edgeVerts)
{
	hsTArray<EdgeBin>*	bins = TRACKED_NEW hsTArray<EdgeBin>[maxVtxIdx+1];

	hsBitVector edgeVertBits;
	// For each vert pair (edge) in idxList
	int i;
	for( i = 0; i < nTris; i++ )
	{
		int j;
		for( j = 0; j < 3; j++ )
		{
			int jPlus = j < 2 ? j+1 : 0;
			int idx0 = idxList[i*3 + j];
			int idx1 = idxList[i*3 + jPlus];

			int lo, hi;
			
			// Look in the LUT for the lower index.
			if( idx0 < idx1 )
			{
				lo = idx0;
				hi = idx1;
			}
			else
			{
				lo = idx1;
				hi = idx0;
			}

			hsTArray<EdgeBin>& loBin = bins[lo];
			// In that bucket, look for the higher index.
			int k;
			for( k = 0; k < loBin.GetCount(); k++ )
			{
				if( loBin[k].fVtx == hi )
					break;
			}

			// If we find it, increment it's count,
			// else add it.
			if( k < loBin.GetCount() )
			{
				loBin[k].fCount++;
			}
			else
			{
				EdgeBin* b = loBin.Push();
				b->fVtx = hi;
				b->fCount = 1;
			}
		}
	}

	// For each bucket in the LUT,
	for( i = 0; i < maxVtxIdx+1; i++ )
	{
		hsTArray<EdgeBin>& loBin = bins[i];
		// For each higher index
		int j;
		for( j = 0; j < loBin.GetCount(); j++ )
		{
			// If the count is one, it's an edge, so set the edge bit for both indices (hi and lo)
			if( 1 == loBin[j].fCount )
			{
				edgeVertBits.SetBit(i);
				edgeVertBits.SetBit(loBin[j].fVtx);
			}
		}
	}
	
	// Now translate the bitvector to a list of indices.
	for( i = 0; i < maxVtxIdx+1; i++ )
	{
		if( edgeVertBits.IsBitSet(i) )
			edgeVerts.Append(i);
	}
	delete [] bins;
}

void plAccMeshSmooth::FindEdges(hsTArray<plGeometrySpan*>& spans, hsTArray<UInt16>* edgeVerts)
{
	fSpans.SetCount(spans.GetCount());

	int i;
	for( i = 0; i < spans.GetCount(); i++ )
	{
		fAccGeom.AccessSpanFromGeometrySpan(fSpans[i], spans[i]);
		if( !fSpans[i].HasAccessTri() )
			continue;

		plAccessTriSpan& triSpan = fSpans[i].AccessTri();

		UInt32 nTris = triSpan.TriCount();
		UInt16* idxList = triSpan.fTris;
		UInt32 maxVertIdx = triSpan.VertCount()-1;

		FindEdges(maxVertIdx, nTris, idxList, edgeVerts[i]);
	}
}

void plAccMeshSmooth::Smooth(hsTArray<plGeometrySpan*>& spans)
{
	hsTArray<UInt16>* shareVtx = TRACKED_NEW hsTArray<UInt16>[spans.GetCount()];
	hsTArray<UInt16>* edgeVerts = TRACKED_NEW hsTArray<UInt16>[spans.GetCount()];
	FindEdges(spans, edgeVerts);

	int i;
	for( i = 0; i < spans.GetCount(); i++ )
	{
		while( edgeVerts[i].GetCount() )
		{
			int j = edgeVerts[i].GetCount()-1;

			plAccessTriSpan& triSpan = fSpans[i].AccessTri();

			VtxAccum accum;
			accum.fPos = IPositionToWorld(fSpans[i], edgeVerts[i][j]);
			accum.fNorm = INormalToWorld(fSpans[i], edgeVerts[i][j]);
			if( triSpan.HasDiffuse() )
				accum.fDiffuse = triSpan.DiffuseRGBA(edgeVerts[i][j]);
			else
				accum.fDiffuse.Set(1.f, 1.f, 1.f, 1.f);

			shareVtx[i].Append(edgeVerts[i][j]);

			// Find shared verts on this same span
			FindSharedVerts(fSpans[i], j, edgeVerts[i], shareVtx[i], accum);

			// Now look through the rest of the spans
			int k;
			for( k = i+1; k < spans.GetCount(); k++ )
			{
				FindSharedVerts(fSpans[k], edgeVerts[k].GetCount(), edgeVerts[k], shareVtx[k], accum);
			}

			accum.fNorm.Normalize();

			if( fFlags & kSmoothNorm )
			{
				for( k = i; k < spans.GetCount(); k++ )
				{
					SetNormals(fSpans[k], shareVtx[k], accum.fNorm);
				}
			}
			if( fFlags & kSmoothPos )
			{
				for( k = i; k < spans.GetCount(); k++ )
				{
					SetPositions(fSpans[k], shareVtx[k], accum.fPos);
				}
			}
			if( fFlags & kSmoothDiffuse )
			{
				for( k = i; k < spans.GetCount(); k++ )
				{
					SetDiffuse(fSpans[k], shareVtx[k], accum.fDiffuse);
				}
			}

			// Now remove all the shared verts (which we just processed)
			// from edgeVerts so we don't process them again.
			for( k = i; k < spans.GetCount(); k++ )
			{
				int m;
				for( m = 0; m < shareVtx[k].GetCount(); m++ )
				{
					int idx = edgeVerts[k].Find(shareVtx[k][m]);
					hsAssert(idx != edgeVerts[k].kMissingIndex, "Lost vertex between find and remove");
					edgeVerts[k].Remove(idx);
				}
				shareVtx[k].SetCount(0);
			}
		}
	}

	delete [] shareVtx;
	delete [] edgeVerts;
}

hsPoint3 plAccMeshSmooth::IPositionToWorld(plAccessSpan& span, int i) const
{
	return span.GetLocalToWorld() * span.AccessTri().Position(i);
}

hsVector3 plAccMeshSmooth::INormalToWorld(plAccessSpan& span, int i) const
{
	if( span.GetWorldToLocal().fFlags & hsMatrix44::kIsIdent )
	{
		return span.AccessTri().Normal(i);
	}

	hsMatrix44 l2wInvTransp;
	span.GetWorldToLocal().GetTranspose(&l2wInvTransp);

	hsVector3 ret = l2wInvTransp * span.AccessTri().Normal(i);
	hsFastMath::NormalizeAppr(ret);
	return ret;
}

hsPoint3 plAccMeshSmooth::IPositionToLocal(plAccessSpan& span, const hsPoint3& wPos) const
{
	return span.GetWorldToLocal() * wPos;
}

hsVector3 plAccMeshSmooth::INormalToLocal(plAccessSpan& span, const hsVector3& wNorm) const
{
	if( span.GetLocalToWorld().fFlags & hsMatrix44::kIsIdent )
	{
		return wNorm;
	}

	hsMatrix44 w2lInvTransp;
	span.GetLocalToWorld().GetTranspose(&w2lInvTransp);

	hsVector3 ret = w2lInvTransp * wNorm;
	hsFastMath::NormalizeAppr(ret);
	return ret;
}

void plAccMeshSmooth::FindSharedVerts(plAccessSpan& span, int numEdgeVerts, hsTArray<UInt16>& edgeVerts, hsTArray<UInt16>& shareVtx, VtxAccum& accum)
{
	plAccessTriSpan& triSpan = span.AccessTri();
	int i;
	for( i = 0; i < numEdgeVerts; i++ )
	{
		hsPoint3 pos = IPositionToWorld(span, edgeVerts[i]);
		hsVector3 diff(&accum.fPos, &pos);
		if( diff.MagnitudeSquared() < fDistTolSq )
		{
			hsVector3 norm = INormalToWorld(span, edgeVerts[i]);
			if( norm.InnerProduct(accum.fNorm) > fMinNormDot )
			{
				shareVtx.Append(edgeVerts[i]);

				accum.fPos += pos;
				accum.fPos *= 0.5f;

				accum.fNorm += norm;
				hsFastMath::NormalizeAppr(accum.fNorm);

				hsColorRGBA diff;
				if( triSpan.HasDiffuse() )
					diff = triSpan.DiffuseRGBA(edgeVerts[i]);
				else
					diff.Set(1.f, 1.f, 1.f, 1.f);
				accum.fDiffuse += diff;
				accum.fDiffuse *= 0.5f;
			}
		}
	}
}

void plAccMeshSmooth::SetPositions(plAccessSpan& span, hsTArray<UInt16>& shareVtx, const hsPoint3& pos) const
{
	plAccessTriSpan& triSpan = span.AccessTri();
	int i;
	for( i = 0; i < shareVtx.GetCount(); i++ )
		triSpan.Position(shareVtx[i]) = IPositionToLocal(span, pos);
}

void plAccMeshSmooth::SetNormals(plAccessSpan& span, hsTArray<UInt16>& shareVtx, const hsVector3& norm) const
{
	plAccessTriSpan& triSpan = span.AccessTri();
	int i;
	for( i = 0; i < shareVtx.GetCount(); i++ )
		triSpan.Normal(shareVtx[i]) = INormalToLocal(span, norm);
}

void plAccMeshSmooth::SetDiffuse(plAccessSpan& span, hsTArray<UInt16>& shareVtx, const hsColorRGBA& diff) const
{
	plAccessTriSpan& triSpan = span.AccessTri();
	hsAssert(triSpan.HasDiffuse(), "Calling SetColors on data with no color");
	int i;
	for( i = 0; i < shareVtx.GetCount(); i++ )
		triSpan.Diffuse32(shareVtx[i]) = diff.ToARGB32();
}

void plAccMeshSmooth::SetAngle(hsScalar degs)
{
	fMinNormDot = hsCosine(hsScalarDegToRad(degs));
}

hsScalar plAccMeshSmooth::GetAngle() const
{
	return hsScalarRadToDeg(hsACosine(fMinNormDot));
}

void plAccMeshSmooth::SetDistTol(hsScalar dist)
{
	fDistTolSq = dist * dist;
}

hsScalar plAccMeshSmooth::GetDistTol() const
{
	return hsSquareRoot(fDistTolSq);
}