/*==LICENSE==*

CyanWorlds.com Engine - MMOG client, server and tools
Copyright (C) 2011  Cyan Worlds, Inc.

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.

You can contact Cyan Worlds, Inc. by email legal@cyan.com
 or by snail mail at:
      Cyan Worlds, Inc.
      14617 N Newport Hwy
      Mead, WA   99021

*==LICENSE==*/
#include "HeadSpin.h"
// BIPEDKILLER

///////////
//
// INCLUDES
//
///////////

// theirs
#include <windowsx.h>

#include "max.h"
#include "resource.h"
#include "CS/bipexp.h"
#include "decomp.h"

#pragma warning(disable: 4786)		// disable warnings about excessive STL symbol name length

#include <map>
#include <vector>
#include "hsStlSortUtils.h"

// ours
#include "plComponent.h"
#include "plComponentReg.h"
#include "plMiscComponents.h"
#include "../MaxMain/plMaxNodeBase.h"

#include "../plTransform/hsAffineParts.h"
#include "hsMatrix44.h"

//////////////
//
// LOCAL TYPES
//
//////////////

// NODETMINFO
// A local handy thing to remember a matrix and the time we sampled it
struct nodeTMInfo
{
	TimeValue fTime;
	Matrix3 fMat3;
};

// PLSAMPLEVEC
// A vector of matrix samples
typedef std::vector<nodeTMInfo *> plSampleVec;

// PLSAMPLEVECMAP
// A map relating bone names to plSampleVecs
typedef std::map<char *, plSampleVec *, stringSorter> plSampleVecMap;

/////////////
//
// PROTOTYPES
//
/////////////

void ProcessNodeRecurse(INode *node, INode *parent, Interface *theInterface);
void ProcessBipedNodeRecurse(INode *bipNode, INode *newParent, Interface *theInterface);
void ProcessNonBipedNodeRecurse(INode *node, INode *parent, Interface *theInterface);

int LimitTransform(INode* node, Matrix3* nodeTM);
void GetParts(Int32 i, std::vector<nodeTMInfo *>& mat3Array,  hsAffineParts* parts);

Quat GetRotKey(Int32 i, std::vector<nodeTMInfo *>& mat3Array, hsAffineParts* parts);
Point3 GetPosKey(Int32 i, std::vector<nodeTMInfo *>& mat3Array, hsAffineParts* parts);
ScaleValue GetScaleKey(Int32 i, std::vector<nodeTMInfo *>& mat3Array, hsAffineParts* parts);

Quat MakeRotKey(INode *node, INode *parent, TimeValue t);
Point3 MakePosKey(INode *node, INode *parent, TimeValue t);
ScaleValue MakeScaleKey(INode *node, INode *parent, TimeValue t);

AffineParts GetLocalNodeParts(INode *node, INode *parent, TimeValue t);

bool ExportableAnimationController(INode* node);
bool HasBipController(INode* node);
Quat GetRotKey(Int32 i, std::vector<nodeTMInfo *>& mat3Array);


plSampleVec * SampleNodeMotion(INode* node, INode* parent, int sampleRate, Interface *theInterface);
plSampleVec * SampleNodeMotion(INode * node, INode* parent, int sampleRate, TimeValue start, TimeValue end);
void ReapplyAnimation(INode *node, plSampleVec *samples);
void FreeMotionSamples(plSampleVec *samples);

/////////////////
//
// IMPLEMENTATION
//
/////////////////

// REMOVEBIPED
void RemoveBiped(INode *bipRoot, Interface *theInterface)
{
	SuspendAnimate();	
	AnimateOn();
	
	// remember Max's default controllers (for the user)
	ClassDesc* defaultRotCtrl=GetDefaultController(CTRL_ROTATION_CLASS_ID);
	ClassDesc* defaultPosCtrl=GetDefaultController(CTRL_POSITION_CLASS_ID);
	ClassDesc* defaultScaleCtrl=GetDefaultController(CTRL_SCALE_CLASS_ID);
	
	// change default controllers to linear to create linear controllers
	// since we have no tan info
	DllDir* dllDir=&theInterface->GetDllDir();
	ClassDirectory* classDir=&dllDir->ClassDir();

	ClassDesc* rotCtrl = classDir->FindClass( SClass_ID(CTRL_ROTATION_CLASS_ID),
								Class_ID(TCBINTERP_ROTATION_CLASS_ID,0));  // was Class_ID(LININTERP_ROTATION_CLASS_ID,0));

	ClassDesc* posCtrl = classDir->FindClass( SClass_ID(CTRL_POSITION_CLASS_ID),
									Class_ID(LININTERP_POSITION_CLASS_ID, 0));

	ClassDesc* scaleCtrl = classDir->FindClass( SClass_ID(CTRL_SCALE_CLASS_ID),
											Class_ID(LININTERP_SCALE_CLASS_ID, 0));

	SetDefaultController(CTRL_ROTATION_CLASS_ID, rotCtrl);
	SetDefaultController(CTRL_POSITION_CLASS_ID, posCtrl);
	SetDefaultController(CTRL_SCALE_CLASS_ID, scaleCtrl);

	ProcessNodeRecurse(bipRoot, nil, theInterface);

	//deinit
	ResumeAnimate();
	
	// remember Max's default controllers (for the user)
	SetDefaultController(CTRL_ROTATION_CLASS_ID, defaultRotCtrl);
	SetDefaultController(CTRL_POSITION_CLASS_ID, defaultPosCtrl);
	SetDefaultController(CTRL_SCALE_CLASS_ID, defaultScaleCtrl);
}

// PROCESSNODERECURSE
void ProcessNodeRecurse(INode *node, INode *parent, Interface *theInterface)
{
	if(HasBipController(node))
	{
		ProcessBipedNodeRecurse(node, parent, theInterface);
	} else {
		ProcessNonBipedNodeRecurse(node, parent, theInterface);
	}
}

// PROCESSBIPNODERECURSE
// When we find a Biped-controlled node in our hierarchy, we need to find one non-biped
// child and promote it to the place of the biped node in the hierarchy. The siblings
// of the promoted node will become its children, as will the original children from the
// biped node.
void ProcessBipedNodeRecurse(INode *bipNode, INode *parent, Interface *theInterface)
{
	int numChildren = bipNode->NumberOfChildren();
	char *bipName = bipNode ? bipNode->GetName() : nil;
	INode *replacement = nil;

	for (int i = 0; i < numChildren; i++)
	{
		INode *child = bipNode->GetChildNode(i);
		char *childName = child ? child->GetName() : nil;

		if( ! HasBipController(child) )
		{
			replacement = child;					// this child is going to be our replacement for this bipnode

			// sample the animation (into global space)
			plSampleVec *samples = SampleNodeMotion(replacement, bipNode, 1, theInterface);

			// detach from the parent (this blows away the animation)
			replacement->Detach(0);

			// attach the node to the biped's parent.
			parent->AttachChild(replacement);	

			ReapplyAnimation(child, samples);
			FreeMotionSamples(samples);

			// we only need one replacement for the bip node
			break;
		}
	}
	
	if(replacement)
	{
		// reparent the siblings to the newly promoted replacement node
		numChildren = bipNode->NumberOfChildren();
		for (i = 0; i < numChildren; i++)
		{
			INode *child = bipNode->GetChildNode(i);

			if( HasBipController(child) )
			{
				ProcessBipedNodeRecurse(child, replacement, theInterface);
			} else {
				child->Detach(0);					// remove the (non-bip) child from the bip node
				replacement->AttachChild(child);	// attach it to the non-bip parent

				ProcessNonBipedNodeRecurse(child, replacement, theInterface);
			}
		}
	} else {
		// this is an error condition: we've got a bip node that has no non-bip child for us to promote
		char buf[256];
		sprintf(buf, "Couldn't find non-bip node to transfer motion to for bip node %s\n", bipNode->GetName());
		hsStatusMessage(buf);
	}
}

// PROCESSNONBIPEDNODERECURSE
// Sample motion for a hierarchy that does not have any Biped controllers in it.
void ProcessNonBipedNodeRecurse(INode *node, INode *parent, Interface *theInterface)
{
	if( ! ExportableAnimationController(node) )
	{
		plSampleVec *samples = SampleNodeMotion(node, parent, 2, theInterface);
		ReapplyAnimation(node, samples);
		FreeMotionSamples(samples);
	}

	int numChildren = node->NumberOfChildren();
	for (int i = 0; i < numChildren; i++)
	{
		INode *child = node->GetChildNode(i);

		ProcessNodeRecurse(child, node, theInterface);
	}
}

// ADJUSTROTKEYS
void AdjustRotKeys(INode *node)
{
	Control *controller = node->GetTMController();
	Control *rotControl = controller->GetRotationController();
	IKeyControl *rotKeyCont = GetKeyControlInterface(rotControl);
	int numKeys = rotKeyCont->GetNumKeys();

	for(int i = 0; i < numKeys; i++)
	{
		ITCBKey key;
		rotKeyCont->GetKey(i, &key);

		key.cont = 0;
		rotKeyCont->SetKey(i, &key);

	}
	
}

#define boolTrue = (0 == 0);
#define boolFalse = (0 == 1);

// *** todo: generalize this for rotation keys as well.
int CompareKeys(ILinPoint3Key &a, ILinPoint3Key &b)
{
	int result = a.val.Equals(b.val, .001);
#if 0
	hsStatusMessageF("COMPAREKEYS(point): (%f %f %f) vs (%f, %f, %f) = %s\n", a.val.x, a.val.y, a.val.z, b.val.x, b.val.y, b.val.z, result ? "yes" : "no");
#endif
	return result;
}

template<class T>
void ReduceKeys(INode *node, IKeyControl *keyCont)
{

	keyCont->SortKeys();		// ensure the keys are sorted by time
	
	int to;			// the next key we're setting
	int from;		// the next key we're examining
	int origNumKeys = keyCont->GetNumKeys();
	int finalNumKeys = origNumKeys;
	
	for (to = 1, from = 1; from < origNumKeys - 1; to++, from++)
	{
		T prevKey, curKey, nextKey;

		keyCont->GetKey(from - 1, &prevKey);
		keyCont->GetKey(from, &curKey);
		keyCont->GetKey(from + 1, &nextKey);

		if (CompareKeys(curKey, prevKey) && CompareKeys(curKey, nextKey))
			finalNumKeys--; // skip it
		else
			keyCont->SetKey(to, &curKey); // copy current key
	}
	// copy the last one without peeking ahead
	T lastKey;
	keyCont->GetKey(from, &lastKey);
	keyCont->SetKey(to, &lastKey);

	keyCont->SetNumKeys(finalNumKeys);
	keyCont->SortKeys();
}

void EliminateScaleKeys(INode *node, IKeyControl *keyCont)
{
	int numKeys = keyCont->GetNumKeys();
	ILinScaleKey last;
	keyCont->GetKey(numKeys - 1, &last);
	keyCont->SetKey(1, &last);		// move the last to the second
	keyCont->SetNumKeys(2);
}

// REAPPLYANIMATION
// Now that we've reparented a node within the hierarchy, re-apply all its animation.
void ReapplyAnimation(INode *node, plSampleVec *samples)
{
	Control *controller = node->GetTMController();

	Control *rotControl = NewDefaultRotationController();	// we set the default rotation controller type above in RemoveBiped()
	Control *posControl = NewDefaultPositionController();	// '' ''
	Control *scaleControl = NewDefaultScaleController();	// '' ''
	
	controller->SetRotationController(rotControl);
	controller->SetPositionController(posControl);
	controller->SetScaleController(scaleControl);

	for(int i = 0; i < samples->size(); i++)
	{
		nodeTMInfo *info = (*samples)[i];
		Matrix3 m = info->fMat3;
		TimeValue t = info->fTime;

#if 1
		node->SetNodeTM(t, m);
#else
		AffineParts parts;

		INode *parent = node->GetParentNode();
		Matrix3 parentTM = parent->GetNodeTM(t);
		Matrix3 invParentTM = Inverse(parentTM);
		m *= invParentTM;

		decomp_affine(m, &parts);

		Quat q(parts.q.x, parts.q.y, parts.q.z, parts.q.w);
		Point3 p(parts.t.x, parts.t.y, parts.t.z);

		rotControl->SetValue(t, q);
		posControl->SetValue(t, p);
#endif
	}

	IKeyControl *posKeyCont = GetKeyControlInterface(posControl);
	IKeyControl *scaleKeyCont = GetKeyControlInterface(scaleControl);

	ReduceKeys<ILinPoint3Key>(node, posKeyCont);
	EliminateScaleKeys(node, scaleKeyCont);
	// grrrr ReduceKeys<ILinScaleKey>(node, scaleKeyCont);
}

// HASBIPCONTROLLER
bool HasBipController(INode* node)
{
	if (!node)
		return false;
	Control* c = node->GetTMController();
	if (c && ((c->ClassID()== BIPSLAVE_CONTROL_CLASS_ID) ||
		(c->ClassID()== BIPBODY_CONTROL_CLASS_ID) || 
		(c->ClassID()== FOOTPRINT_CLASS_ID)) )
		return true;
	return false;

}

// EXPORTABLEANIMATIONCONTROLLER
bool ExportableAnimationController(INode* node)
{
	bool result = false;

	if(node)
	{
		Control *c = node->GetTMController();
		if(c)
		{
			Class_ID id = c->ClassID();
			if(id == Class_ID(LININTERP_ROTATION_CLASS_ID, 0)
				|| id == Class_ID(PRS_CONTROL_CLASS_ID, 0)
				|| id == Class_ID(LININTERP_POSITION_CLASS_ID, 0)
				|| id == Class_ID(TCBINTERP_FLOAT_CLASS_ID, 0)
				|| id == Class_ID(TCBINTERP_POSITION_CLASS_ID, 0)
				|| id == Class_ID(TCBINTERP_ROTATION_CLASS_ID, 0)
				|| id == Class_ID(TCBINTERP_POINT3_CLASS_ID, 0)
				|| id == Class_ID(TCBINTERP_SCALE_CLASS_ID, 0))
			{
				result = true;
			}
		}
	}
	return result;
}

// SAMPLENODEMOTION
// top level function for sampling all the motion on a single node
plSampleVec * SampleNodeMotion(INode* node, INode* parent, int sampleRate, Interface *theInterface)
{
	Interval interval = theInterface->GetAnimRange();
	TimeValue start = interval.Start();					// in ticks
	TimeValue end = interval.End();

	sampleRate *= GetTicksPerFrame();					// convert sample rate to ticks

	return SampleNodeMotion(node, parent, sampleRate, start, end);
}

// SAMPLENODEMOTION
// sample all the motion on a single node
// intended for use in the context of a full tree traversal
plSampleVec * SampleNodeMotion(INode * node, INode* parent, int sampleRate, TimeValue start, TimeValue end)
{
	plSampleVec *result = TRACKED_NEW plSampleVec;

	bool done = false;
	
    for(int i = start; ! done; i += sampleRate)
	{
		if (i > end) i = end;
		if (i == end) done = true;

		// Get key time
		TimeValue keyTime = i;
		int frameNum= keyTime / GetTicksPerFrame();

		// get localTM
		nodeTMInfo * nti = TRACKED_NEW nodeTMInfo;
		nti->fTime = keyTime;
		Matrix3 localTM = node->GetNodeTM(keyTime);

		nti->fMat3 = localTM;
		result->push_back(nti);
	}
	return result;
}

// FREEMOTIONSAMPLES
void FreeMotionSamples(plSampleVec *samples)
{
	int count = samples->size();
	for(int i = 0; i < count; i++)
	{
		delete (*samples)[i];
	}
	delete samples;
}

// LIMITTRANSFORM
// Check if this node is marked as having a constrained transform.
// Meaning ignore part of the transform for this node and push it down to its kids.
int LimitTransform(INode* node, Matrix3* nodeTM)
{
/* NOT sure if we want to support this functionality: probably eventually.
	hsBool32 noRotX=false,noRotY=false,noRotZ=false;
	hsBool32 noRot=gUserPropMgr.UserPropExists(node,"BEHNoRot") || MatWrite::HasToken(node->GetName(), "norot");
	if (!noRot)
	{
		noRotX=gUserPropMgr.UserPropExists(node,"BEHNoRotX") || MatWrite::HasToken(node->GetName(), "norotx");
		noRotY=gUserPropMgr.UserPropExists(node,"BEHNoRotY") || MatWrite::HasToken(node->GetName(), "noroty");
		noRotZ=gUserPropMgr.UserPropExists(node,"BEHNoRotZ") || MatWrite::HasToken(node->GetName(), "norotz");
	}

	hsBool32 noTransX=false,noTransY=false,noTransZ=false;
	hsBool32 noTrans=gUserPropMgr.UserPropExists(node,"BEHNoTrans") || MatWrite::HasToken(node->GetName(), "notrans");
	if (!noTrans)
	{
		noTransX=gUserPropMgr.UserPropExists(node,"BEHNoTransX") || MatWrite::HasToken(node->GetName(), "notransx");
		noTransY=gUserPropMgr.UserPropExists(node,"BEHNoTransY") || MatWrite::HasToken(node->GetName(), "notransy");
		noTransZ=gUserPropMgr.UserPropExists(node,"BEHNoTransZ") || MatWrite::HasToken(node->GetName(), "notransz");
	}

	if (noRot || noTrans || 
		noRotX || noRotY || noRotZ ||
		noTransX || noTransY || noTransZ)
	{
		Matrix3 tm(true);			// identity
		
		Quat q(*nodeTM);			// matrix to quat
		float eulerAng[3];
		QuatToEuler(q, eulerAng);	// to euler
		
		// rotation
		if (!noRot && !noRotX)
			tm.RotateX(eulerAng[0]);
		if (!noRot && !noRotY)
			tm.RotateY(eulerAng[1]);
		if (!noRot && !noRotZ)
			tm.RotateZ(eulerAng[2]);

		// translation
		Point3 trans=nodeTM->GetTrans();
		if (noTrans || noTransX)
			trans.x=0;
		if (noTrans || noTransY)
			trans.y=0;
		if (noTrans || noTransZ)
			trans.z=0;
		tm.Translate(trans);

		// copy back
		*nodeTM = tm;
		return true;
	}
*/
	return false;
}


/*
//////////
// ARCHIVE
//////////
// Stuff we're not using but that looks kind of handy and which we might use again at some point.

/////////////////////////////////
/////////////////////////////////
/// SAMPLETREEMOTION
/// Sample motion for all of the non-bip bones in the heirarchy.
/// Need to sample the motion before rearranging the hierarchy and then
/// apply it after rearranging; hence the intermediate storage format.

// SAMPLETREEMOTION
// Sample all the (non-bip) motion in the whole tree
plSampleVecMap *SampleTreeMotion(INode* node, INode* parent, int sampleRate, Interface *theInterface)
{
	Interval interval = theInterface->GetAnimRange();
	TimeValue start = interval.Start();				// in ticks
	TimeValue end = interval.End();
	plSampleVecMap *ourMap = TRACKED_NEW plSampleVecMap();

	sampleRate *= GetTicksPerFrame();					// convert sample rate to ticks

	SampleTreeMotionRecurse(node, parent, sampleRate, start, end, ourMap);

	return ourMap;
}

// SAMPLETREEMOTIONRECURSE
void SampleTreeMotionRecurse(INode * node, INode* parent, int sampleRate,
							 TimeValue start, TimeValue end, plSampleVecMap *ourMap)
{
	// if it's not a bip, sample the fuck out of it
	if(!HasBipController(node))
	{
		char *nodeName = node->GetName();
		char *nameCopy = TRACKED_NEW char[strlen(nodeName) + 1];
		strcpy(nameCopy, nodeName);

		plSampleVec *branch = SampleNodeMotion(node, parent, sampleRate, start, end);
		(*ourMap)[nameCopy] = branch;
	}

	// whether it's a bip or not, paw through its children
	for(int i = 0; i < node->NumberOfChildren(); i++)
	{
		INode *child = node->GetChildNode(i);
		SampleTreeMotionRecurse(child, node, sampleRate, start, end, ourMap);
	}
}

// GETPARTS
void GetParts(Int32 i, std::vector<nodeTMInfo *>& mat3Array,  hsAffineParts* parts)
{
	hsAssert(parts, "nil parts");

	// decomp matrix
	gemAffineParts ap;
	hsMatrix44 tXform =	plMaxNodeBase::Matrix3ToMatrix44(mat3Array[i]->fMat3);

	decomp_affine(tXform.fMap, &ap); 
	AP_SET((*parts), ap);
}

// MAKEROTKEY
Quat MakeRotKey(INode *node, INode *parent, TimeValue t)
{
	AffineParts parts = GetLocalNodeParts(node, parent, t);

	Quat q(parts.q.x, parts.q.y, parts.q.z, parts.q.w);
	if( parts.f < 0.f )
	{
//		q = Quat(parts.q.x, parts.q.y, parts.q.z, -parts.q.w);
	}
	else
	{
//		q=Quat(-parts.q.x, -parts.q.y, -parts.q.z, parts.q.w);
	}

	return q;
}

Quat GetRotKey(Int32 i, std::vector<nodeTMInfo *>& mat3Array)
{
	Matrix3 m = mat3Array[i]->fMat3;
	AffineParts parts;

	decomp_affine(m, &parts);

	Quat q(parts.q.x, parts.q.y, parts.q.z, parts.q.w);

	return q;
}


// GETROTKEY
Quat GetRotKey(Int32 i, std::vector<nodeTMInfo *>& mat3Array, hsAffineParts* parts)
{
	hsAffineParts myParts;
	if (!parts)
	{
		parts=&myParts;
		GetParts(i, mat3Array, parts);
	}

	Quat q;
	if( parts->fF < 0.f )
	{
		q = Quat(parts->fQ.fX, parts->fQ.fY, parts->fQ.fZ, -parts->fQ.fW); // ??? why are we inverting W?
#if 0
		if( false)
		{
			Point3 ax;
			float ang;
			AngAxisFromQ(q, &ang, ax);
			//ang -= hsScalarPI;
			ax = -ax;
			q = QFromAngAxis(ang, ax);
		}
#endif
	}
	else
	{
		q=Quat(-parts->fQ.fX, -parts->fQ.fY, -parts->fQ.fZ, parts->fQ.fW);
	}

	return q;
}

// MAKEPOSKEY
Point3 MakePosKey(INode *node, INode *parent, TimeValue t)
{
	AffineParts parts = GetLocalNodeParts(node, parent, t);

	return Point3(parts.t.x, parts.t.y, parts.t.z);
}


// GETPOSKEY
Point3 GetPosKey(Int32 i, std::vector<nodeTMInfo *>& mat3Array, hsAffineParts* parts)
{
	hsAffineParts myParts;
	if (!parts)
	{
		parts=&myParts;
		GetParts(i, mat3Array, parts);
	}
	return Point3(parts->fT.fX, parts->fT.fY, parts->fT.fZ);
}

// MAKESCALEKEY
ScaleValue MakeScaleKey(INode *node, INode *parent, TimeValue t)
{
	Matrix3 m1 = node->GetNodeTM(t);
	hsMatrix44 hsM = plMaxNodeBase::Matrix3ToMatrix44(m1);
	gemAffineParts ap;
	hsAffineParts hsParts;

	decomp_affine(hsM.fMap, &ap);
	AP_SET(hsParts, ap);

	Point3 sAx1;
	sAx1=Point3(hsParts.fK.fX, hsParts.fK.fY, hsParts.fK.fZ);
	if( hsParts.fF < 0.f )
	{
		sAx1=-sAx1;
	}
	Quat sQ1(hsParts.fU.fX, hsParts.fU.fY, hsParts.fU.fZ, hsParts.fU.fW);

//	return ScaleValue(sAx, sQ);

	AffineParts parts = GetLocalNodeParts(node, parent, t);

	Point3 sAx(parts.k.x, parts.k.y, parts.k.z);
	if( parts.f < 0.f )
	{
		sAx=-sAx;
	}
	Quat sQ(parts.u.x, parts.u.y, parts.u.z, parts.u.w);

	return ScaleValue(sAx, sQ);
}

// GETSCALEKEY
ScaleValue GetScaleKey(Int32 i, std::vector<nodeTMInfo *>& mat3Array, hsAffineParts* parts)
{
	hsAffineParts myParts;
	if (!parts)
	{
		parts=&myParts;
		GetParts(i, mat3Array, parts);
	}

	Point3 sAx;
	sAx=Point3(parts->fK.fX, parts->fK.fY, parts->fK.fZ);
	if( parts->fF < 0.f )
	{
		sAx=-sAx;
	}
	Quat sQ(parts->fU.fX, parts->fU.fY, parts->fU.fZ, parts->fU.fW);

	return ScaleValue(sAx, sQ);
}


// GETLOCALNODEPARTS
AffineParts GetLocalNodeParts(INode *node, INode *parent, TimeValue t)
{
	Matrix3 localTM = node->GetNodeTM(t);		// world transform of source node

	INode *parent2 = node->GetParentNode();
	// localize it
	Matrix3 parentTMX = parent->GetNodeTM(t);
	Matrix3 parentTM = parent2->GetNodeTM(t);

	Matrix3 invParent = Inverse(parentTM);
	localTM *= invParent;

	AffineParts parts;

	decomp_affine(localTM, &parts);

	return parts;
}


*/