/*==LICENSE==* CyanWorlds.com Engine - MMOG client, server and tools Copyright (C) 2011 Cyan Worlds, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . Additional permissions under GNU GPL version 3 section 7 If you modify this Program, or any covered work, by linking or combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK, NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK (or a modified version of those libraries), containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA, PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the licensors of this Program grant you additional permission to convey the resulting work. Corresponding Source for a non-source form of such a combination shall include the source code for the parts of OpenSSL and IJG JPEG Library used as well as that of the covered work. You can contact Cyan Worlds, Inc. by email legal@cyan.com or by snail mail at: Cyan Worlds, Inc. 14617 N Newport Hwy Mead, WA 99021 *==LICENSE==*/ #ifndef hsSearchVersion_inc #define hsSearchVersion_inc #include "hsTypes.h" /* do a template of lists to search for a matching entry. basic idea is that you start off with an array of buckets and you know that you will get at least one, possibly several, in each bucket. when you go to search, you already know which bucket it will be in if it's there. even as the array is being filled, each filled entry in each bucket has a valid forever index, as well as it's key value. so array is fixed length, index into array has no bearing on forever index, elements of array can grow, and at all times the used forever indices form a contiguous set from 0 to max forever index. */ template class hsVersionNode { protected: T fData; Int32 fIndex; hsVersionNode* fNext; public: hsVersionNode(const UInt32 idx, const T &data) : fIndex(idx), fNext(nil) { fData = data; } ~hsVersionNode() { delete fNext; } hsVersionNode* Next() const { return fNext; } Int32 Index() const { return fIndex; } inline void Append(hsVersionNode* next); inline int operator==(const T& o) const; int operator!=(const T& o) const { return !(this->operator==(o)); } T& GetData() { return fData; } }; template int hsVersionNode::operator==(const T& data) const { return fData == data; } template void hsVersionNode::Append(hsVersionNode* next) { if( fNext ) fNext->Append(next); else fNext = next; } template class hsSearchVersion { protected: UInt32 fLength; hsVersionNode** fArray; UInt32 fNextIndex; UInt32 fNumIndex; UInt32 fIncIndex; T** fBackArray; void ICheckBackArray(); public: hsSearchVersion(UInt32 len, UInt32 inc = 0); ~hsSearchVersion(); T& operator[]( Int32 index ); Int32 Find(int where, const T& what, hsBool forceUnique=false); UInt32 GetCount() const { return fNextIndex; } }; template T& hsSearchVersion::operator[]( Int32 index ) { hsDebugCode(hsThrowIfBadParam((UInt32)index >= (UInt32)fNextIndex);) return *fBackArray[index]; } template hsSearchVersion::hsSearchVersion(UInt32 len, UInt32 inc) : fNextIndex(0) { fIncIndex = inc ? inc : len; fLength = len; fArray = TRACKED_NEW hsVersionNode*[fLength]; HSMemory::Clear(fArray, fLength*sizeof(*fArray)); fBackArray = TRACKED_NEW T*[fNumIndex = fLength]; } template hsSearchVersion::~hsSearchVersion() { int i; for( i = 0; i < fLength; i++ ) delete fArray[i]; delete [] fArray; delete [] fBackArray; } template void hsSearchVersion::ICheckBackArray() { if( fNextIndex >= fNumIndex ) { T** newBackArray = TRACKED_NEW T*[fNumIndex + fIncIndex]; HSMemory::BlockMove(fBackArray, newBackArray, fNextIndex*sizeof(T*)); delete [] fBackArray; fBackArray = newBackArray; fNumIndex += fIncIndex; } } template Int32 hsSearchVersion::Find(int where, const T&what, hsBool forceUnique) { hsVersionNode* curr = fArray[where]; ICheckBackArray(); if( !curr ) { hsVersionNode* next = TRACKED_NEW hsVersionNode(fNextIndex, what); fArray[where] = next; fBackArray[fNextIndex] = &next->GetData(); return fNextIndex++; } if( *curr == what ) return curr->Index(); while( curr->Next() && (forceUnique || (*curr->Next() != what)) ) curr = curr->Next(); if( curr->Next() ) return curr->Next()->Index(); hsVersionNode* next = TRACKED_NEW hsVersionNode(fNextIndex, what); curr->Append(next); fBackArray[fNextIndex] = &next->GetData(); return fNextIndex++; } #endif // hsSearchVersion_inc