/*==LICENSE==* CyanWorlds.com Engine - MMOG client, server and tools Copyright (C) 2011 Cyan Worlds, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. Additional permissions under GNU GPL version 3 section 7 If you modify this Program, or any covered work, by linking or combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK, NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK (or a modified version of those libraries), containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA, PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the licensors of this Program grant you additional permission to convey the resulting work. Corresponding Source for a non-source form of such a combination shall include the source code for the parts of OpenSSL and IJG JPEG Library used as well as that of the covered work. You can contact Cyan Worlds, Inc. by email legal@cyan.com or by snail mail at: Cyan Worlds, Inc. 14617 N Newport Hwy Mead, WA 99021 *==LICENSE==*/ #ifndef hsBitVector_inc #define hsBitVector_inc #include "HeadSpin.h" template <class T> class hsTArray; class hsStream; class hsBitVector { protected: uint32_t* fBitVectors; uint32_t fNumBitVectors; void IGrow(uint32_t newNumBitVectors); friend class hsBitIterator; public: hsBitVector(const hsBitVector& other); hsBitVector(uint32_t which) : fBitVectors(nil), fNumBitVectors(0) { SetBit(which); } hsBitVector(int b, ...); // list of one or more integer bits to set. -1 (or any negative) terminates the list (e.g. hsBitVector(0,1,4,-1); hsBitVector(const hsTArray<int16_t>& list); // sets bit for each int in list hsBitVector() : fBitVectors(nil), fNumBitVectors(0) {} virtual ~hsBitVector() { Reset(); } hsBitVector& Reset() { delete [] fBitVectors; fBitVectors = nil; fNumBitVectors = 0; return *this; } hsBitVector& Clear(); // everyone clear, but no dealloc hsBitVector& Set(int upToBit=-1); // WARNING - see comments at function bool operator==(const hsBitVector& other) const; // unset (ie uninitialized) bits are clear, bool operator!=(const hsBitVector& other) const { return !(*this == other); } hsBitVector& operator=(const hsBitVector& other); // will wind up identical bool ClearBit(uint32_t which) { return SetBit(which, 0); } // returns previous state bool SetBit(uint32_t which, bool on = true); // returns previous state bool IsBitSet(uint32_t which) const; // returns current state bool ToggleBit(uint32_t which); // returns previous state hsBitVector& RemoveBit(uint32_t which); // removes bit, sliding higher bits down to fill the gap. friend inline int Overlap(const hsBitVector& lhs, const hsBitVector& rhs) { return lhs.Overlap(rhs); } bool Overlap(const hsBitVector& other) const; bool Empty() const; bool operator[](uint32_t which) const { return IsBitSet(which); } friend inline hsBitVector operator&(const hsBitVector& lhs, const hsBitVector& rhs); // See Overlap() friend inline hsBitVector operator|(const hsBitVector& lhs, const hsBitVector& rhs); friend inline hsBitVector operator^(const hsBitVector& lhs, const hsBitVector& rhs); friend inline hsBitVector operator-(const hsBitVector& lhs, const hsBitVector& rhs); // return lhs w/ rhs's bits turned off hsBitVector& operator&=(const hsBitVector& other); // See Overlap() hsBitVector& operator|=(const hsBitVector& other); hsBitVector& operator^=(const hsBitVector& other); hsBitVector& operator-=(const hsBitVector& other); // return me w/ other's bits turned off hsBitVector& Compact(); hsBitVector& SetSize(uint32_t numBits) { ClearBit(numBits+1); return *this; } uint32_t GetSize() { return fNumBitVectors << 5; } // integer level access uint32_t GetNumBitVectors() const { return fNumBitVectors; } uint32_t GetBitVector(int i) const { return fBitVectors[i]; } void SetNumBitVectors(uint32_t n) { Reset(); fNumBitVectors=n; fBitVectors = new uint32_t[n]; } void SetBitVector(int i, uint32_t val) { fBitVectors[i]=val; } // Do dst.SetCount(0), then add each set bit's index into dst, returning dst. hsTArray<int16_t>& Enumerate(hsTArray<int16_t>& dst) const; // this->Clear(), then set all bits listed in src, returning *this. hsBitVector& FromList(const hsTArray<int16_t>& src); void Read(hsStream* s); void Write(hsStream* s) const; }; inline hsBitVector::hsBitVector(const hsBitVector& other) { if( 0 != (fNumBitVectors = other.fNumBitVectors) ) { fBitVectors = new uint32_t[fNumBitVectors]; int i; for( i = 0; i < fNumBitVectors; i++ ) fBitVectors[i] = other.fBitVectors[i]; } else fBitVectors = nil; } inline bool hsBitVector::Empty() const { int i; for( i = 0; i < fNumBitVectors; i++ ) { if( fBitVectors[i] ) return false; } return true; } inline bool hsBitVector::Overlap(const hsBitVector& other) const { if( fNumBitVectors > other.fNumBitVectors ) return other.Overlap(*this); int i; for( i = 0; i < fNumBitVectors; i++ ) { if( fBitVectors[i] & other.fBitVectors[i] ) return true; } return false; } inline hsBitVector& hsBitVector::operator=(const hsBitVector& other) { if( this != &other ) { if( fNumBitVectors < other.fNumBitVectors ) { Reset(); fNumBitVectors = other.fNumBitVectors; fBitVectors = new uint32_t[fNumBitVectors]; } else { Clear(); } int i; for( i = 0; i < other.fNumBitVectors; i++ ) fBitVectors[i] = other.fBitVectors[i]; } return *this; } inline bool hsBitVector::operator==(const hsBitVector& other) const { if( fNumBitVectors < other.fNumBitVectors ) return other.operator==(*this); int i; for( i = 0; i < other.fNumBitVectors; i++ ) if( fBitVectors[i] ^ other.fBitVectors[i] ) return false; for( ; i < fNumBitVectors; i++ ) if( fBitVectors[i] ) return false; return true; } inline hsBitVector& hsBitVector::operator&=(const hsBitVector& other) { if( this == &other ) return *this; if( fNumBitVectors > other.fNumBitVectors ) { fNumBitVectors = other.fNumBitVectors; } int i; for( i = 0; i < fNumBitVectors; i++ ) fBitVectors[i] &= other.fBitVectors[i]; return *this; } inline hsBitVector& hsBitVector::operator|=(const hsBitVector& other) { if( this == &other ) return *this; if( fNumBitVectors < other.fNumBitVectors ) { IGrow(other.fNumBitVectors); } int i; for( i = 0; i < other.fNumBitVectors; i++ ) fBitVectors[i] |= other.fBitVectors[i]; return *this; } inline hsBitVector& hsBitVector::operator^=(const hsBitVector& other) { if( this == &other ) { Clear(); return *this; } if( fNumBitVectors < other.fNumBitVectors ) { IGrow(other.fNumBitVectors); } int i; for( i = 0; i < other.fNumBitVectors; i++ ) fBitVectors[i] ^= other.fBitVectors[i]; return *this; } inline hsBitVector& hsBitVector::operator-=(const hsBitVector& other) { if( this == &other ) { Clear(); return *this; } int minNum = fNumBitVectors < other.fNumBitVectors ? fNumBitVectors : other.fNumBitVectors; int i; for( i = 0; i < minNum; i++ ) fBitVectors[i] &= ~other.fBitVectors[i]; return *this; } inline hsBitVector operator&(const hsBitVector& rhs, const hsBitVector& lhs) { hsBitVector ret(rhs); return ret &= lhs; } inline hsBitVector operator|(const hsBitVector& rhs, const hsBitVector& lhs) { hsBitVector ret(rhs); return ret |= lhs; } inline hsBitVector operator^(const hsBitVector& rhs, const hsBitVector& lhs) { hsBitVector ret(rhs); return ret ^= lhs; } inline hsBitVector operator-(const hsBitVector& rhs, const hsBitVector& lhs) { hsBitVector ret(rhs); return ret -= lhs; } inline hsBitVector& hsBitVector::Clear() { int i; for( i = 0; i < fNumBitVectors; i++ ) fBitVectors[i] = 0; return *this; } // WARNING - since the bitvector is conceptually infinitely long, // we can't actually set all the bits. If you pass in a non-negative // upToBit, this sets all bits up to and including that one, otherwise // it just sets however many bits are currently allocated. You can // assure this is as many as you want by first calling SetSize, but // if there are more bits than the requested size, these will also // get set. Calling Set with a non-negative upToBit will only set // the bits from 0 to upToBit, but won't clear any higher bits. inline hsBitVector& hsBitVector::Set(int upToBit) { if( upToBit >= 0 ) { uint32_t major = upToBit >> 5; uint32_t minor = 1 << (upToBit & 0x1f); if( major >= fNumBitVectors ) IGrow(major+1); uint32_t i; for( i = 0; i < major; i++ ) fBitVectors[i] = 0xffffffff; for( i = 1; i <= minor && i > 0; i <<= 1 ) fBitVectors[major] |= i; } else { int i; for( i = 0; i < fNumBitVectors; i++ ) fBitVectors[i] = 0xffffffff; } return *this; } inline bool hsBitVector::IsBitSet(uint32_t which) const { uint32_t major = which >> 5; return (major < fNumBitVectors) && (0 != (fBitVectors[major] & 1 << (which & 0x1f))); } inline bool hsBitVector::SetBit(uint32_t which, bool on) { uint32_t major = which >> 5; uint32_t minor = 1 << (which & 0x1f); if( major >= fNumBitVectors ) IGrow(major+1); bool ret = 0 != (fBitVectors[major] & minor); if( ret != on ) { if( on ) fBitVectors[major] |= minor; else fBitVectors[major] &= ~minor; } return ret; } inline bool hsBitVector::ToggleBit(uint32_t which) { uint32_t major = which >> 5; uint32_t minor = 1 << (which & 0x1f); if( major >= fNumBitVectors ) IGrow(major); bool ret = 0 != (fBitVectors[major] & minor); if( ret ) fBitVectors[major] &= ~minor; else fBitVectors[major] |= minor; return ret; } inline hsBitVector& hsBitVector::RemoveBit(uint32_t which) { uint32_t major = which >> 5; if( major >= fNumBitVectors ) return *this; uint32_t minor = 1 << (which & 0x1f); uint32_t lowMask = minor-1; uint32_t hiMask = ~(lowMask); fBitVectors[major] = (fBitVectors[major] & lowMask) | ((fBitVectors[major] >> 1) & hiMask); while( major < fNumBitVectors-1 ) { if( fBitVectors[major+1] & 0x1 ) fBitVectors[major] |= 0x80000000; else fBitVectors[major] &= ~0x80000000; major++; fBitVectors[major] >>= 1; } fBitVectors[major] &= ~0x80000000; return *this; } class hsBitIterator { protected: const hsBitVector& fBits; int fCurrent; int fCurrVec; int fCurrBit; int IAdvanceBit(); int IAdvanceVec(); public: // Must call begin after instanciating. hsBitIterator(const hsBitVector& bits) : fBits(bits) {} int Begin(); int Current() const { return fCurrent; } int Advance(); int End() const { return fCurrVec < 0; } }; #endif // hsBitVector_inc