/*==LICENSE==* CyanWorlds.com Engine - MMOG client, server and tools Copyright (C) 2011 Cyan Worlds, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . Additional permissions under GNU GPL version 3 section 7 If you modify this Program, or any covered work, by linking or combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK, NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK (or a modified version of those libraries), containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA, PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the licensors of this Program grant you additional permission to convey the resulting work. Corresponding Source for a non-source form of such a combination shall include the source code for the parts of OpenSSL and IJG JPEG Library used as well as that of the covered work. You can contact Cyan Worlds, Inc. by email legal@cyan.com or by snail mail at: Cyan Worlds, Inc. 14617 N Newport Hwy Mead, WA 99021 *==LICENSE==*/ #include "hsTypes.h" #include "hsGeometry3.h" #include "hsMatrix44.h" #include "plConvexVolume.h" #include "hsStream.h" plConvexVolume::plConvexVolume() { //fFlags = nil; fLocalPlanes = nil; fWorldPlanes = nil; fNumPlanes = 0; } plConvexVolume::~plConvexVolume() { IClear(); } void plConvexVolume::IClear() { //delete [] fFlags; delete [] fLocalPlanes; delete [] fWorldPlanes; } hsBool plConvexVolume::AddPlane(const hsPlane3 &plane) { // First check for a redundant plane (since we're convex, a comparison of normals should do) int i; // Start the comparison with the most recently added plane, it's most likely to match for (i = fNumPlanes - 1; i >= 0; i--) { const float MIN_COS_THETA = 0.99999f; // translates to < 0.25 degree angle // If the angle betwen the normals is close enough, count them as equal. if (fLocalPlanes[i].fN.InnerProduct(plane.fN) >= MIN_COS_THETA) return false; // no need to add it } fNumPlanes++; //delete [] fFlags; //fFlags = TRACKED_NEW UInt32[fNumPlanes]; hsPlane3 *tempPlanes = TRACKED_NEW hsPlane3[fNumPlanes]; for (i = 0; i < fNumPlanes - 1; i++) { tempPlanes[i] = fLocalPlanes[i]; } tempPlanes[fNumPlanes - 1] = plane; delete [] fLocalPlanes; fLocalPlanes = tempPlanes; delete [] fWorldPlanes; fWorldPlanes = TRACKED_NEW hsPlane3[fNumPlanes]; return true; } void plConvexVolume::Update(const hsMatrix44 &l2w) { int i; hsPoint3 planePt; for (i = 0; i < fNumPlanes; i++) { // Since fN is an hsVector3, it will only apply the rotational aspect of the transform... fWorldPlanes[i].fN = l2w * fLocalPlanes[i].fN; planePt.Set(&(fLocalPlanes[i].fN * fLocalPlanes[i].fD)); fWorldPlanes[i].fD = -(l2w * planePt).InnerProduct(fWorldPlanes[i].fN); } } void plConvexVolume::SetNumPlanesAndClear(const UInt32 num) { IClear(); //fFlags = TRACKED_NEW UInt32[num]; fLocalPlanes = TRACKED_NEW hsPlane3[num]; fWorldPlanes = TRACKED_NEW hsPlane3[num]; fNumPlanes = num; } void plConvexVolume::SetPlane(const hsPlane3 &plane, const UInt32 index) { fLocalPlanes[index] = plane; } hsBool plConvexVolume::IsInside(const hsPoint3 &pos) const { int i; for( i = 0; i < fNumPlanes; i++ ) { if (!TestPlane(pos, fWorldPlanes[i])) return false; } return true; } hsBool plConvexVolume::ResolvePoint(hsPoint3 &pos) const { hsScalar minDist = 1.e33f; Int32 minIndex = -1; hsScalar currDist; int i; for (i = 0; i < fNumPlanes; i++) { currDist = -fWorldPlanes[i].fD - fWorldPlanes[i].fN.InnerProduct(pos); if (currDist < 0) return false; // We're not inside this plane, and thus outside the volume if (currDist < minDist) { minDist = currDist; minIndex = i; } } pos += (-fWorldPlanes[minIndex].fD - fWorldPlanes[minIndex].fN.InnerProduct(pos)) * fWorldPlanes[minIndex].fN; return true; } hsBool plConvexVolume::BouncePoint(hsPoint3 &pos, hsVector3 &velocity, hsScalar bounce, hsScalar friction) const { hsScalar minDist = 1.e33f; Int32 minIndex = -1; hsScalar currDist; int i; for (i = 0; i < fNumPlanes; i++) { currDist = -fWorldPlanes[i].fD - fWorldPlanes[i].fN.InnerProduct(pos); if (currDist < 0) return false; // We're not inside this plane, and thus outside the volume if (currDist < minDist) { minDist = currDist; minIndex = i; } } pos += (-fWorldPlanes[minIndex].fD - fWorldPlanes[minIndex].fN.InnerProduct(pos)) * fWorldPlanes[minIndex].fN; hsVector3 bnc = -velocity.InnerProduct(fWorldPlanes[minIndex].fN) * fWorldPlanes[minIndex].fN; velocity += bnc; velocity *= 1.f - friction; velocity += bnc * bounce; // velocity += (velocity.InnerProduct(fWorldPlanes[minIndex].fN) * -(1.f + bounce)) * fWorldPlanes[minIndex].fN; return true; } void plConvexVolume::Read(hsStream* s, hsResMgr *mgr) { SetNumPlanesAndClear(s->ReadSwap32()); int i; for (i = 0; i < fNumPlanes; i++) { fLocalPlanes[i].Read(s); //fFlags[i] = s->ReadSwap32(); } } void plConvexVolume::Write(hsStream* s, hsResMgr *mgr) { s->WriteSwap32(fNumPlanes); int i; for (i = 0; i < fNumPlanes; i++) { fLocalPlanes[i].Write(s); //s->WriteSwap32(fFlags[i]); } }