/*==LICENSE==* CyanWorlds.com Engine - MMOG client, server and tools Copyright (C) 2011 Cyan Worlds, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . Additional permissions under GNU GPL version 3 section 7 If you modify this Program, or any covered work, by linking or combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK, NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK (or a modified version of those libraries), containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA, PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the licensors of this Program grant you additional permission to convey the resulting work. Corresponding Source for a non-source form of such a combination shall include the source code for the parts of OpenSSL and IJG JPEG Library used as well as that of the covered work. You can contact Cyan Worlds, Inc. by email legal@cyan.com or by snail mail at: Cyan Worlds, Inc. 14617 N Newport Hwy Mead, WA 99021 *==LICENSE==*/ #include "hsTypes.h" #include "plSpaceTree.h" #include "hsStream.h" #include "hsBitVector.h" #include "plProfile.h" #include "../plIntersect/plVolumeIsect.h" #include "../plMath/hsRadixSort.h" static hsBitVector scratchTotVec; static hsBitVector scratchBitVec; static hsTArray scratchList; static hsTArray scratchSort; plProfile_CreateCounter("Harvest Leaves", "Draw", HarvestLeaves); void plSpaceTreeNode::Read(hsStream* s) { fWorldBounds.Read(s); fFlags = s->ReadSwap16(); fParent = s->ReadSwap16(); fChildren[0] = s->ReadSwap16(); fChildren[1] = s->ReadSwap16(); } void plSpaceTreeNode::Write(hsStream* s) { fWorldBounds.Write(s); s->WriteSwap16(fFlags); s->WriteSwap16(fParent); s->WriteSwap16(fChildren[0]); if( fFlags & kIsLeaf ) // Temp for now to play nice with binary patches s->WriteSwap16( 0 ); else s->WriteSwap16(fChildren[1]); } plSpaceTree::plSpaceTree() : fCullFunc(nil), fNumLeaves(0), fCache(nil) { } plSpaceTree::~plSpaceTree() { } void plSpaceTree::IRefreshRecur(Int16 which) { plSpaceTreeNode& sub = fTree[which]; if( sub.fFlags & plSpaceTreeNode::kIsLeaf ) { sub.fFlags &= ~plSpaceTreeNode::kDirty; return; } if( sub.fFlags & plSpaceTreeNode::kDirty ) { IRefreshRecur(sub.fChildren[0]); IRefreshRecur(sub.fChildren[1]); sub.fWorldBounds.MakeEmpty(); if( !(fTree[sub.fChildren[0]].fFlags & plSpaceTreeNode::kDisabled) ) sub.fWorldBounds.Union(&fTree[sub.fChildren[0]].fWorldBounds); if( !(fTree[sub.fChildren[1]].fFlags & plSpaceTreeNode::kDisabled) ) sub.fWorldBounds.Union(&fTree[sub.fChildren[1]].fWorldBounds); sub.fFlags &= ~plSpaceTreeNode::kDirty; } } void plSpaceTree::Refresh() { if( !IsEmpty() ) IRefreshRecur(fRoot); } void plSpaceTree::SetTreeFlag(UInt16 f, hsBool on) { if( IsEmpty() ) return; if( !on ) { ClearTreeFlag(f); return; } int i; for( i = 0; i < fTree.GetCount(); i++ ) fTree[i].fFlags |= f; } void plSpaceTree::ClearTreeFlag(UInt16 f) { if( IsEmpty() ) return; int i; for( i = 0; i < fTree.GetCount(); i++ ) fTree[i].fFlags &= ~f; } void plSpaceTree::SetLeafFlag(Int16 idx, UInt16 f, hsBool on) { if( IsEmpty() ) return; hsAssert(idx == fTree[idx].fLeafIndex, "Some scrambling of indices"); if( !on ) { ClearLeafFlag(idx, f); return; } fTree[idx].fFlags |= f; idx = fTree[idx].fParent; while( idx != kRootParent ) { if( (fTree[idx].fFlags & f) || !(fTree[fTree[idx].fChildren[0]].fFlags & fTree[fTree[idx].fChildren[1]].fFlags & f) ) { idx = kRootParent; } else { fTree[idx].fFlags |= f; idx = fTree[idx].fParent; } } } void plSpaceTree::ClearLeafFlag(Int16 idx, UInt16 f) { hsAssert(idx == fTree[idx].fLeafIndex, "Some scrambling of indices"); while( idx != kRootParent ) { if( !(fTree[idx].fFlags & f) ) { return; } else { fTree[idx].fFlags &= ~f; idx = fTree[idx].fParent; } } } inline void plSpaceTree::IEnableLeaf(Int16 idx, hsBitVector& cache) const { cache.SetBit(idx); idx = fTree[idx].fParent; while( idx != kRootParent ) { if( cache.IsBitSet(idx) ) { return; } else { cache.SetBit(idx); idx = fTree[idx].fParent; } } } void plSpaceTree::EnableLeaf(Int16 idx, hsBitVector& cache) const { IEnableLeaf(idx, cache); } void plSpaceTree::EnableLeaves(const hsTArray& list, hsBitVector& cache) const { if( IsEmpty() ) return; int i; for( i = 0; i < list.GetCount(); i++ ) { IEnableLeaf(list[i], cache); } } void plSpaceTree::IHarvestAndCullEnabledLeaves(Int16 subIdx, const hsBitVector& cache, hsTArray& list) const { if( !cache.IsBitSet(subIdx) ) return; const plSpaceTreeNode& subRoot = fTree[subIdx]; plVolumeCullResult res = fCullFunc->Test(subRoot.fWorldBounds); if( res == kVolumeCulled ) return; if( subRoot.fFlags & plSpaceTreeNode::kIsLeaf ) { list.Append(subIdx); } else { if( res == kVolumeClear ) { IHarvestEnabledLeaves(subRoot.fChildren[0], cache, list); IHarvestEnabledLeaves(subRoot.fChildren[1], cache, list); } else { IHarvestAndCullEnabledLeaves(subRoot.fChildren[0], cache, list); IHarvestAndCullEnabledLeaves(subRoot.fChildren[1], cache, list); } } } void plSpaceTree::IHarvestEnabledLeaves(Int16 subIdx, const hsBitVector& cache, hsTArray& list) const { if( !cache.IsBitSet(subIdx) ) return; const plSpaceTreeNode& subRoot = fTree[subIdx]; if( subRoot.fFlags & plSpaceTreeNode::kIsLeaf ) { plProfile_Inc(HarvestLeaves); list.Append(subIdx); } else { IHarvestEnabledLeaves(subRoot.fChildren[0], cache, list); IHarvestEnabledLeaves(subRoot.fChildren[1], cache, list); } } void plSpaceTree::HarvestEnabledLeaves(plVolumeIsect* cull, const hsBitVector& cache, hsTArray& list) const { if( IsEmpty() ) return; if( fCullFunc = cull ) IHarvestAndCullEnabledLeaves(fRoot, cache, list); else IHarvestEnabledLeaves(fRoot, cache, list); } void plSpaceTree::IHarvestEnabledLeaves(Int16 subIdx, const hsBitVector& cache, hsBitVector& totList, hsBitVector& list) const { if( IsDisabled(subIdx) ) return; if( totList.IsBitSet(subIdx) ) return; totList.SetBit(subIdx); const plSpaceTreeNode& subRoot = fTree[subIdx]; if( subRoot.fFlags & plSpaceTreeNode::kIsLeaf ) { plProfile_Inc(HarvestLeaves); list.SetBit(subIdx); } else { IHarvestEnabledLeaves(subRoot.fChildren[0], cache, totList, list); IHarvestEnabledLeaves(subRoot.fChildren[1], cache, totList, list); } } void plSpaceTree::MoveLeaf(Int16 idx, const hsBounds3Ext& bnd) { hsAssert(idx == fTree[idx].fLeafIndex, "Some scrambling of indices"); fTree[idx].fWorldBounds = bnd; while( idx != kRootParent ) { if( fTree[idx].fFlags & plSpaceTreeNode::kDirty ) { idx = kRootParent; } else { fTree[idx].fFlags |= plSpaceTreeNode::kDirty; idx = fTree[idx].fParent; } } } void plSpaceTree::HarvestLeaves(Int16 subRoot, hsBitVector& totList, hsBitVector& list) const { if( !IsEmpty() ) { if( fCache ) { IHarvestEnabledLeaves(subRoot, *fCache, totList, list); } else { IHarvestLeaves(fTree[subRoot], totList, list); } } } void plSpaceTree::HarvestLeaves(hsBitVector& totList, hsBitVector& list) const { if( !IsEmpty() ) IHarvestLeaves(fTree[fRoot], totList, list); } void plSpaceTree::HarvestLeaves(hsBitVector& list) const { if( !IsEmpty() ) IHarvestLeaves(fTree[fRoot], scratchTotVec, list); scratchTotVec.Clear(); } void plSpaceTree::HarvestLeaves(plVolumeIsect* cull, hsBitVector& list) const { if( !IsEmpty() ) { if( fCullFunc = cull ) IHarvestAndCullLeaves(fTree[fRoot], scratchTotVec, list); else IHarvestLeaves(fTree[fRoot], scratchTotVec, list); } scratchTotVec.Clear(); } void plSpaceTree::HarvestLeaves(Int16 subRoot, hsBitVector& list) const { IHarvestLeaves(GetNode(subRoot), scratchTotVec, list); scratchTotVec.Clear(); } void plSpaceTree::HarvestLeaves(plVolumeIsect* cull, hsTArray& list) const { if( !IsEmpty() ) { scratchBitVec.Clear(); HarvestLeaves(cull, scratchBitVec); BitVectorToList(list, scratchBitVec); } } void plSpaceTree::HarvestLeaves(hsTArray& list) const { if( !IsEmpty() ) { scratchBitVec.Clear(); HarvestLeaves(scratchBitVec); BitVectorToList(list, scratchBitVec); } } void plSpaceTree::HarvestLeaves(Int16 subRoot, hsTArray& list) const { if( !IsEmpty() ) { scratchBitVec.Clear(); HarvestLeaves(subRoot, scratchBitVec); BitVectorToList(list, scratchBitVec); } } void plSpaceTree::BitVectorToList(hsTArray& list, const hsBitVector& bitVec) const { #if 0 // added func to bitvector int i; for( i = 0; i < fNumLeaves; i++ ) { if( bitVec.IsBitSet(i) ) list.Append(i); } #else // added func to bitvector bitVec.Enumerate(list); #endif // added func to bitvector } void plSpaceTree::IHarvestAndCullLeaves(const plSpaceTreeNode& subRoot, hsBitVector& totList, hsBitVector& list) const { if( subRoot.fFlags & plSpaceTreeNode::kDisabled ) return; int idx = &subRoot - &fTree[0]; if( totList.IsBitSet(idx) ) return; hsAssert(fCullFunc, "Oops"); plVolumeCullResult res = fCullFunc->Test(subRoot.fWorldBounds); if( res == kVolumeCulled ) return; if( subRoot.fFlags & plSpaceTreeNode::kIsLeaf ) { totList.SetBit(idx); plProfile_Inc(HarvestLeaves); list.SetBit(subRoot.fLeafIndex); } else { if( res == kVolumeClear ) { totList.SetBit(idx); IHarvestLeaves(fTree[subRoot.fChildren[0]], totList, list); IHarvestLeaves(fTree[subRoot.fChildren[1]], totList, list); } else { IHarvestAndCullLeaves(fTree[subRoot.fChildren[0]], totList, list); IHarvestAndCullLeaves(fTree[subRoot.fChildren[1]], totList, list); } } } void plSpaceTree::IHarvestAndCullLeaves(const plSpaceTreeNode& subRoot, hsTArray& list) const { if( subRoot.fFlags & plSpaceTreeNode::kDisabled ) return; hsAssert(fCullFunc, "Oops"); plVolumeCullResult res = fCullFunc->Test(subRoot.fWorldBounds); if( res == kVolumeCulled ) return; if( subRoot.fFlags & plSpaceTreeNode::kIsLeaf ) { plProfile_Inc(HarvestLeaves); list.Append(subRoot.fLeafIndex); } else { if( res == kVolumeClear ) { IHarvestLeaves(fTree[subRoot.fChildren[0]], list); IHarvestLeaves(fTree[subRoot.fChildren[1]], list); } else { IHarvestAndCullLeaves(fTree[subRoot.fChildren[0]], list); IHarvestAndCullLeaves(fTree[subRoot.fChildren[1]], list); } } } void plSpaceTree::IHarvestLeaves(const plSpaceTreeNode& subRoot, hsBitVector& totList, hsBitVector& list) const { if( subRoot.fFlags & plSpaceTreeNode::kDisabled ) return; int idx = &subRoot - &fTree[0]; if( totList.IsBitSet(idx) ) return; totList.SetBit(idx); if( subRoot.fFlags & plSpaceTreeNode::kIsLeaf ) { plProfile_Inc(HarvestLeaves); list.SetBit(subRoot.fLeafIndex); } else { IHarvestLeaves(fTree[subRoot.fChildren[0]], totList, list); IHarvestLeaves(fTree[subRoot.fChildren[1]], totList, list); } } void plSpaceTree::IHarvestLeaves(const plSpaceTreeNode& subRoot, hsTArray& list) const { if( subRoot.fFlags & plSpaceTreeNode::kDisabled ) return; if( subRoot.fFlags & plSpaceTreeNode::kIsLeaf ) { plProfile_Inc(HarvestLeaves); list.Append(subRoot.fLeafIndex); } else { IHarvestLeaves(fTree[subRoot.fChildren[0]], list); IHarvestLeaves(fTree[subRoot.fChildren[1]], list); } } void plSpaceTree::Read(hsStream* s, hsResMgr* mgr) { plCreatable::Read(s, mgr); fRoot = s->ReadSwap16(); fNumLeaves = UInt16(s->ReadSwap32()); UInt32 n = s->ReadSwap32(); fTree.SetCount(n); int i; for( i = 0; i < n; i++ ) fTree[i].Read(s); } void plSpaceTree::Write(hsStream* s, hsResMgr* mgr) { plCreatable::Write(s, mgr); s->WriteSwap16(fRoot); s->WriteSwap32(fNumLeaves); s->WriteSwap32(fTree.GetCount()); int i; for( i = 0; i < fTree.GetCount(); i++ ) { fTree[i].Write(s); } } // Some debug only stuff void plSpaceTree::HarvestLevel(int level, hsTArray& list) const { if( !IsEmpty() ) { IHarvestLevel(fRoot, level, 0, list); } } void plSpaceTree::IHarvestLevel(Int16 subRoot, int level, int currLevel, hsTArray& list) const { if( level == currLevel ) { list.Append(subRoot); return; } if( IsLeaf(subRoot) ) return; IHarvestLevel(GetNode(subRoot).GetChild(0), level, currLevel+1, list); IHarvestLevel(GetNode(subRoot).GetChild(1), level, currLevel+1, list); }