/*==LICENSE==* CyanWorlds.com Engine - MMOG client, server and tools Copyright (C) 2011 Cyan Worlds, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . Additional permissions under GNU GPL version 3 section 7 If you modify this Program, or any covered work, by linking or combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK, NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK (or a modified version of those libraries), containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA, PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the licensors of this Program grant you additional permission to convey the resulting work. Corresponding Source for a non-source form of such a combination shall include the source code for the parts of OpenSSL and IJG JPEG Library used as well as that of the covered work. You can contact Cyan Worlds, Inc. by email legal@cyan.com or by snail mail at: Cyan Worlds, Inc. 14617 N Newport Hwy Mead, WA 99021 *==LICENSE==*/ #include "hsWide.h" ///////////////////////////////////////////////////////////////////////// inline hsBool OverflowAdd(UInt32* sum, UInt32 a, UInt32 b) { *sum = a + b; return (a | b) > *sum; // true if overflow } /* Return the overflow from adding the three longs into a signed-wide wide = (high << 32) + (middle << 16) + low */ inline hsBool SetWide3(hsWide* target, Int32 high, UInt32 middle, UInt32 low) { hsAssert(high >= 0, "high is neg"); target->fLo = low + (middle << 16); target->fHi = high + (middle >> 16) + (((low >> 16) + (UInt16)middle) >> 16); return target->fHi < 0; // true if overflow } ///////////////////////////////////////////////////////////////////////// hsWide* hsWide::Mul(Int32 src1, Int32 src2) { int neg = 0; if (src1 < 0) { src1 = -src1; neg = ~0; } if (src2 < 0) { src2 = -src2; neg = ~neg; } UInt32 a = src1 >> 16; UInt32 b = (UInt16)src1; UInt32 c = src2 >> 16; UInt32 d = (UInt16)src2; (void)SetWide3(this, a * c, a * d + c * b, b * d); if (neg) this->Negate(); return this; } hsWide* hsWide::Mul(Int32 A) { int neg = 0; UInt32 B = fLo; Int32 C = fHi; Int32 tmp; UInt32 clo,blo,bhi,alo; if (A < 0) { A = -A; neg = ~0; } if (WIDE_ISNEG(C, B)) { WIDE_NEGATE(C, B); neg = ~neg; } UInt32 ahi = A >> 16; UInt32 chi = C >> 16; if (ahi != 0 && chi != 0) goto OVER_FLOW; alo = (UInt16)A; bhi = B >> 16; blo = (UInt16)B; clo = (UInt16)C; tmp = alo * clo; if (tmp < 0 || SetWide3(this, tmp, alo * bhi, alo * blo)) goto OVER_FLOW; if (chi != 0) { UInt32 Vh = alo * chi; if (Vh >> 15) goto OVER_FLOW; if (((this->fHi >> 16) + (UInt16)Vh) >> 15) goto OVER_FLOW; this->fHi += Vh << 16; } else // ahi != 0 && chi == 0 { hsWide w; UInt32 Vh = ahi * clo; if (Vh >> 16) goto OVER_FLOW; tmp = ahi * bhi; if (tmp < 0 || SetWide3(&w, tmp, ahi * blo, 0)) goto OVER_FLOW; if (((w.fHi >> 16) + (UInt16)Vh) >> 15) goto OVER_FLOW; w.fHi += Vh << 16; this->Add(&w); } if (neg) this->Negate(); return this; OVER_FLOW: *this = neg ? kNegInfinity64 : kPosInfinity64; return this; } hsWide* hsWide::Div(Int32 denom) { if (denom == 0) { if (this->IsNeg()) { hsSignalMathUnderflow(); *this = kNegInfinity64; } else { hsSignalMathOverflow(); *this = kPosInfinity64; } return this; } int neg = 0; Int32 resultH = 0; UInt32 resultL = 0; Int32 numerH = this->fHi; UInt32 numerL = this->fLo; if (denom < 0) { denom = -denom; neg = ~0; } if (WIDE_ISNEG(numerH, numerL)) { WIDE_NEGATE(numerH, numerL); neg = ~neg; } WIDE_ADDPOS(numerH, numerL, denom >> 1); // add denom/2 to get a round result UInt32 curr = (UInt32)numerH >> 31; for (int i = 0; i < 64; i++) { WIDE_SHIFTLEFT(resultH, resultL, resultH, resultL, 1); if (UInt32(denom) <= curr) { resultL |= 1; curr -= denom; } WIDE_SHIFTLEFT(numerH, numerL, numerH, numerL, 1); curr = (curr << 1) | ((UInt32)numerH >> 31); } if (neg) WIDE_NEGATE(resultH, resultL); return this->Set(resultH, resultL); } hsWide* hsWide::Div(const hsWide* denom) { hsWide d = *denom; int shift = 0; while (d.IsWide()) { (void)d.ShiftRight(1); shift += 1; } if (shift) { d = *denom; (void)this->RoundRight(shift); (void)d.RoundRight(shift); } return this->Div(d.AsLong()); } inline int MaxLeftShift(const hsWide* w) { Int32 hi = w->fHi; if (hi == 0) return 31; else { int shift = -1; if (hi < 0) hi = -hi; do { hi <<= 1; shift += 1; } while (hi > 0); return shift; } } hsFixed hsWide::FixDiv(const hsWide* denom) const { hsWide num = *this; hsWide den = *denom; int maxShift = MaxLeftShift(this); if (maxShift >= 16) // easy case (void)num.ShiftLeft(16); else { (void)num.ShiftLeft(maxShift); (void)den.RoundRight(16 - maxShift); } return num.Div(&den)->AsLong(); } hsFract hsWide::FracDiv(const hsWide* denom) const { hsWide num = *this; hsWide den = *denom; int maxShift = MaxLeftShift(this); if (maxShift >= 30) // easy case (void)num.ShiftLeft(30); else { (void)num.ShiftLeft(maxShift); (void)den.RoundRight(30 - maxShift); } return num.Div(&den)->AsLong(); } //////////////////////////////////////////////////////////////////////////////////// Int32 hsWide::Sqrt() const { int bits = 32; UInt32 root = 0; UInt32 valueH = (UInt32)fHi; UInt32 valueL = fLo; UInt32 currH = 0; UInt32 currL = 0; UInt32 guessH, guessL; do { WIDE_SHIFTLEFT(currH, currL, currH, currL, 2); currL |= TOP2BITS(valueH); WIDE_SHIFTLEFT(valueH, valueL, valueH, valueL, 2); WIDE_SHIFTLEFT(guessH, guessL, 0, root, 2); root <<= 1; if (WIDE_LESSTHAN(guessH, guessL, currH, currL)) { WIDE_ADDPOS(guessH, guessL, 1); WIDE_SUBWIDE(currH, currL, guessH, guessL); root |= 1; } } while (--bits); #if HS_PIN_MATH_OVERFLOW if ((Int32)root < 0) return kPosInfinity32; #endif return (Int32)root; } Int32 hsWide::CubeRoot() const { int bits = 21; UInt32 root = 0; UInt32 valueH = (UInt32)fHi; UInt32 valueL = fLo; UInt32 currH, currL; UInt32 guessH, guessL; hsBool neg = false; if (WIDE_ISNEG(valueH, valueL)) { neg = true; WIDE_NEGATE(valueH, valueL); } currH = currL = 0; WIDE_SHIFTLEFT(valueH, valueL, valueH, valueL, 1); do { WIDE_SHIFTLEFT(currH, currL, currH, currL, 3); currL |= TOP3BITS(valueH); WIDE_SHIFTLEFT(valueH, valueL, valueH, valueL, 3); root <<= 1; hsWide w; w.Mul(root, root)->Add(root); #if 0 w.Mul(3); #else hsWide w2 = w; w.ShiftLeft(1)->Add(&w2); #endif guessH = (UInt32)w.fHi; guessL = w.fLo; if (WIDE_LESSTHAN(guessH, guessL, currH, currL)) { WIDE_ADDPOS(guessH, guessL, 1); WIDE_SUBWIDE(currH, currL, guessH, guessL); root |= 1; } } while (--bits); if (neg) root = -Int32(root); return (Int32)root; }