/*==LICENSE==* CyanWorlds.com Engine - MMOG client, server and tools Copyright (C) 2011 Cyan Worlds, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . Additional permissions under GNU GPL version 3 section 7 If you modify this Program, or any covered work, by linking or combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK, NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK (or a modified version of those libraries), containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA, PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the licensors of this Program grant you additional permission to convey the resulting work. Corresponding Source for a non-source form of such a combination shall include the source code for the parts of OpenSSL and IJG JPEG Library used as well as that of the covered work. You can contact Cyan Worlds, Inc. by email legal@cyan.com or by snail mail at: Cyan Worlds, Inc. 14617 N Newport Hwy Mead, WA 99021 *==LICENSE==*/ #ifndef hsTemplatesDefined #define hsTemplatesDefined #include "hsExceptions.h" #include "hsMemory.h" #include "hsRefCnt.h" #include "hsUtils.h" #include #ifdef HS_DEBUGGING // #define HS_DEBUGTARRAY #endif #ifdef HS_DEBUGTARRAY // just a quickie d-link list class for debugging class hsDlistNode { public: static hsDlistNode *fpFirst; static hsDlistNode *fpLast; static UInt32 fcreated; static UInt32 fdestroyed; void *fpThing; hsDlistNode *fpPrev; hsDlistNode *fpNext; hsDlistNode(void *tng): fpThing(tng), fpNext(0), fpPrev(0) { AddNode(); } void AddNode(); void RemoveNode(); hsDlistNode *GetNext() { return fpNext; } }; #endif // Use this for a pointer to a single object of class T allocated with new template class hsTempObject { T* fObject; public: hsTempObject(): fObject(nil){} hsTempObject(T* p) : fObject(p) {} hsTempObject(const hsTempObject & that) {*this=that;} ~hsTempObject() { delete fObject; } hsTempObject & operator=(const hsTempObject & src) { if (fObject!=src.fObject) { delete fObject; fObject=src.fObject; } return *this; } hsTempObject & operator=(T * ptr) { if (fObject!=ptr) { delete fObject; fObject=ptr; } return *this; } operator T*() const { return fObject; } operator T*&() { return fObject; } operator const T&() const { return *fObject; } operator bool() const { return fObject!=nil;} T * operator->() const { return fObject; } T * operator *() const { return fObject; } }; // Use this for subclasses of hsRefCnt, where UnRef should be called at the end template class hsTempRef { T* fObject; public: hsTempRef(T* object = nil) : fObject(object) {} ~hsTempRef() { if (fObject) fObject->UnRef(); } operator T*() const { return fObject; } T* operator->() const { return fObject; } T* operator=(T* src) { hsRefCnt_SafeUnRef(fObject); fObject = src; return fObject; } }; // Use this for an array of objects of class T allocated with new[] template class hsTempArray { T* fArray; UInt32 fCount; hsTempArray& operator=(const hsTempArray&); public: hsTempArray(long count) : fArray(TRACKED_NEW T[count]), fCount(count) { } hsTempArray(long count, T initValue) : fArray(TRACKED_NEW T[count]), fCount(count) { for (int i = 0; i < count; i++) fArray[i] = initValue; } hsTempArray(T* p) : fArray(p), fCount(1) { } hsTempArray() : fArray(nil), fCount(0) { } ~hsTempArray() { delete[] fArray; } operator T*() const { return fArray; } T* GetArray() const { return fArray; } void Accomodate(UInt32 count) { if (count > fCount) { delete[] fArray; fCount = count; fArray = TRACKED_NEW T[count]; } } }; //////////////////////////////////////////////////////////////////////////////// // //// Like hsTempArray, but more useful when working with char * type arrays. //enum KStringFormatConstructor {kFmtCtor}; //enum KStringFormatVConstructor {kFmtVCtor}; //class hsTempString //{ //public: // char * fStr; // hsTempString(): fStr(nil){} // hsTempString(char * p) : fStr(p) {} // hsTempString(const char * p) { fStr=hsStrcpy(p); } // hsTempString(KStringFormatConstructor, char * fmt, ...); // hsTempString(KStringFormatVConstructor, char * fmt, va_list args); // hsTempString(const hsTempString & other):fStr(hsStrcpy(other.fStr)){} // virtual ~hsTempString() { delete [] fStr; } // hsTempString & operator=(char * ptr) // { // if (fStr!=ptr) // { // delete [] fStr; // fStr=ptr; // } // return *this; // } // hsTempString & operator=(const hsTempString & other) // { // delete [] fStr; // fStr=hsStrcpy(other.fStr); // return *this; // } // operator char *() const { return fStr; } // operator char *&() { return fStr; } // operator const char *() const { return fStr; } // operator bool() const { return fStr!=nil;} // char * operator *() const { return fStr; } // const char* c_str() const { return fStr; } // char* c_str() { return fStr; } //}; // //// shorthand //typedef hsTempString tmpstr_t; // //class hsTempStringF : public hsTempString //{ //public: // hsTempStringF(char * fmt, ...); // void Format(char * fmt, ...); // // hsTempString & operator=(char * ptr) { return hsTempString::operator=(ptr); } // hsTempString & operator=(const hsTempString & other) { return hsTempString::operator=(other); } // hsTempString & operator=(const hsTempStringF & other) { return hsTempString::operator=(other); } // operator char *() const { return fStr; } // operator char *&() { return fStr; } // operator const char *() const { return fStr; } // operator bool() const { return fStr!=nil;} // char * operator *() const { return fStr; } //}; ////////////////////////////////////////////////////////////////////////////// template class hsDynamicArray { private: Int32 fCount; T* fArray; hsDynamicArray& operator=(const hsDynamicArray&); // don't allow assignment public: enum { kMissingIndex = -1 }; hsDynamicArray(Int32 count = 0); virtual ~hsDynamicArray(); Int32 GetCount() const { return fCount; } hsBool IsEmpty() const { return fCount == 0; } const T& Get(Int32 index) const; Int32 Get(Int32 index, Int32 count, T data[]) const; Int32 Find(const T&) const; // returns kMissingIndex if not found void SetCount(Int32 count); T& operator[]( Int32 index ); Int32 Append(const T&); Int32 InsertAtIndex(UInt32 index, const T& obj); Int32 Push(const T&); Int32 Pop(T*); void Remove(Int32); void Reset(); // clears out everything T* AcquireArray() { return fArray; } T* DetachArray() { T* t = fArray; fCount = 0; fArray = nil; return t; } void ReleaseArray(T*) {} hsDynamicArray* Copy(hsDynamicArray* dst = nil) const; T* ForEach(Boolean (*proc)(T&)); T* ForEach(Boolean (*proc)(T&, void* p1), void* p1); T* ForEach(Boolean (*proc)(T&, void* p1, void* p2), void* p1, void* p2); }; // Use this for block of memory allocated with HSMemory::New() template class hsDynamicArrayAccess { T* fArray; hsDynamicArray *fArrayObj; hsDynamicArrayAccess& operator=(const hsDynamicArrayAccess&); public: hsDynamicArrayAccess(hsDynamicArray *array) : fArrayObj(array) { fArray = array->AcquireArray();} ~hsDynamicArrayAccess() { fArrayObj->ReleaseArray(fArray); } operator T*() const { return fArray; } T* operator->() const { return fArray; } }; template hsDynamicArray::hsDynamicArray(Int32 count) { fCount = count; fArray = nil; if (count) fArray = TRACKED_NEW T[ count ]; } template hsDynamicArray::~hsDynamicArray() { this->Reset(); } template void hsDynamicArray::SetCount(Int32 count) { if (fCount != count) { if (count == 0) this->Reset(); else { T* newArray = TRACKED_NEW T[count]; if (fArray) { int copyCount = hsMinimum(count, fCount); for (int i = 0; i < copyCount; i++) newArray[i] = fArray[i]; delete[] fArray; } fCount = count; fArray = newArray; } } } template T& hsDynamicArray::operator[]( Int32 index ) { hsDebugCode(hsThrowIfBadParam((UInt32)index >= (UInt32)fCount);) return fArray[index]; } template const T& hsDynamicArray::Get( Int32 index ) const { hsDebugCode(hsThrowIfBadParam((UInt32)index >= (UInt32)fCount);) return fArray[index]; } template Int32 hsDynamicArray::Get(Int32 index, Int32 count, T data[]) const { if (count > 0) { hsThrowIfNilParam(data); hsThrowIfBadParam((UInt32)index >= fCount); if (index + count > fCount) count = fCount - index; for (int i = 0; i < count; i++) data[i] = fArray[i + index]; } return count; } template Int32 hsDynamicArray::Find(const T& obj) const { for (int i = 0; i < fCount; i++) if (fArray[i] == obj) return i; return kMissingIndex; } template void hsDynamicArray::Remove(Int32 index) { hsThrowIfBadParam((UInt32)index >= (UInt32)fCount); T rVal = fArray[index]; if (--fCount > 0) { int i; T* newList = TRACKED_NEW T[fCount]; for(i = 0 ; i < index;i++) newList[i] = fArray[i]; for (i = index; i < fCount; i++) newList[i] = fArray[i + 1]; delete [] fArray; fArray = newList; } else { delete[] fArray; fArray = nil; } } template Int32 hsDynamicArray::Pop(T *obj) { hsThrowIfBadParam(this->IsEmpty()); *obj = fArray[0]; Remove(0); return fCount; } template Int32 hsDynamicArray::Push(const T& obj) { if (fArray) { T* newList = TRACKED_NEW T[fCount+1]; for(int i = 0 ; i < fCount; i++) newList[i+1] = fArray[i]; newList[0] = obj; delete [] fArray; fArray = newList; } else { hsAssert(fCount == 0, "mismatch"); fArray = TRACKED_NEW T[1]; fArray[0] = obj; } return ++fCount; } template Int32 hsDynamicArray::Append(const T& obj) { if (fArray) { T* newList = TRACKED_NEW T[fCount + 1]; for (int i = 0; i < fCount; i++) newList[i] = fArray[i]; newList[fCount] = obj; delete [] fArray; fArray = newList; } else { hsAssert(fCount == 0, "mismatch"); fArray = TRACKED_NEW T[1]; fArray[0] = obj; } return ++fCount; } template Int32 hsDynamicArray::InsertAtIndex(UInt32 index, const T& obj) { if (fArray) { hsAssert(UInt32(fCount) >= index, "Index too large for array"); T* newList = TRACKED_NEW T[fCount + 1]; unsigned i; for ( i = 0; i < index; i++) newList[i] = fArray[i]; newList[index] = obj; for ( i = index; i < UInt32(fCount); i++) newList[i+1] = fArray[i]; delete [] fArray; fArray = newList; } else { hsAssert(fCount == 0, "mismatch"); hsAssert(index ==0,"Can't insert at non zero index in empty array"); fArray = TRACKED_NEW T[1]; fArray[0] = obj; } return ++fCount; } template void hsDynamicArray::Reset() { if (fArray) { delete[] fArray; fArray = nil; fCount = 0; } } template hsDynamicArray* hsDynamicArray::Copy(hsDynamicArray* dst) const { if (dst == nil) dst = TRACKED_NEW hsDynamicArray; else dst->Reset(); dst->SetCount(this->fCount); for (int i = 0; i < this->fCount; i++) dst->fArray[i] = this->fArray[i]; return dst; } template T* hsDynamicArray::ForEach(Boolean (*proc)(T&)) { for (int i = 0; i < fCount; i++) if (proc(fArray[i])) return &fArray[i]; return nil; } template T* hsDynamicArray::ForEach(Boolean (*proc)(T&, void* p1), void * p1) { for (int i = 0; i < fCount; i++) if (proc(fArray[i], p1)) return &fArray[i]; return nil; } template T* hsDynamicArray::ForEach(Boolean (*proc)(T&, void* p1, void* p2), void *p1, void *p2) { for (int i = 0; i < fCount; i++) if (proc(fArray[i], p1, p2)) return &fArray[i]; return nil; } //////////////////////////////////////////////////////////////////////////////// class hsTArrayBase { protected: UInt16 fUseCount; UInt16 fTotalCount; void GrowArraySize(UInt16 nSize); #ifdef HS_DEBUGTARRAY hsTArrayBase(); virtual char *GetTypeName(); virtual int GetSizeOf(); hsDlistNode *self; friend void TArrayStats(); virtual ~hsTArrayBase(); #else hsTArrayBase():fUseCount(0), fTotalCount(0){} #endif public: UInt16 GetNumAlloc() const { return fTotalCount; } }; template class hsTArray : public hsTArrayBase { T* fArray; inline void IncCount(int index, int count); inline void DecCount(int index, int count); #ifdef HS_DEBUGGING #define hsTArray_ValidateCount(count) hsAssert(((count) >= 0)&&((count) <= 0xffffL), "bad count") #define hsTArray_ValidateIndex(index) hsAssert(unsigned(index) < fUseCount, "bad index") #define hsTArray_ValidateInsertIndex(index) hsAssert(unsigned(index) <= fUseCount, "bad index") #define hsTArray_Validate(condition) hsAssert(condition, "oops") #ifdef HS_DEBUGTARRAY virtual int GetSizeOf() { return sizeof(T); } #endif #else #define hsTArray_ValidateCount(count) #define hsTArray_ValidateIndex(index) #define hsTArray_ValidateInsertIndex(index) #define hsTArray_Validate(condition) #endif public: hsTArray() : fArray(nil) {} inline hsTArray(int count); inline hsTArray(const hsTArray& src); ~hsTArray() { if (fArray) delete[] fArray; } inline void Expand(int NewTotal); inline hsTArray& operator=(const hsTArray& src); bool operator==(const hsTArray& src) const; // checks sizes and contents // Swaps the internal data (including the fArray POINTER) with the data from the array given void Swap( hsTArray& src ); void Set(int index, const T& item) { hsTArray_ValidateIndex(index); fArray[index]=item; } const T& Get(int index) const { hsTArray_ValidateIndex(index); return fArray[index]; } T& operator[](int index) const { hsTArray_ValidateIndex(index); return fArray[index]; } T* FirstIter() { return &fArray[0]; } T* StopIter() { return &fArray[fUseCount]; } int Count() const { return fUseCount; } int GetCount() const { return fUseCount; } inline void SetCount(int count); inline void SetCountAndZero(int count); // does block clear, don't use for types with vtbl inline void ExpandAndZero(int count); // Same as set count and zero except won't decrease // usecount inline void Reset(); T* Insert(int index) { hsTArray_ValidateInsertIndex(index); this->IncCount(index, 1); return &fArray[index]; } void Insert(int index, const T& item) { hsTArray_ValidateInsertIndex(index); this->IncCount(index, 1); fArray[index] = item; } void Insert(int index, int count, T item[]) { hsTArray_ValidateCount(count); if (count > 0) { hsTArray_ValidateInsertIndex(index); this->IncCount(index, count); hsTArray_CopyForward(item, &fArray[index], count); } } // This guy is a duplicate for compatibility with the older hsDynamicArray<> void InsertAtIndex(int index, const T& item) { this->Insert(index, item); } void Remove(int index) { hsTArray_ValidateIndex(index); this->DecCount(index, 1); } void Remove(int index, int count) { hsTArray_ValidateCount(count); hsTArray_ValidateIndex(index); hsTArray_ValidateIndex(index + count - 1); this->DecCount(index, count); } hsBool RemoveItem(const T& item); T* Push() { this->IncCount(fUseCount, 1); return &fArray[fUseCount - 1]; } void Push(const T& item) { this->IncCount(fUseCount, 1); fArray[fUseCount - 1] = item; } void Append(const T& item) { this->IncCount(fUseCount, 1); fArray[fUseCount - 1] = item; } inline T Pop(); inline const T& Peek() const; enum { kMissingIndex = -1 }; int Find(const T& item) const; // returns kMissingIndex if not found inline T* ForEach(hsBool (*proc)(T&)); inline T* ForEach(hsBool (*proc)(T&, void* p1), void* p1); inline T* ForEach(hsBool (*proc)(T&, void* p1, void* p2), void* p1, void* p2); T* DetachArray() { T* array = fArray; fUseCount = fTotalCount = 0; fArray = nil; return array; } T* AcquireArray() { return fArray; } }; ////////////// Public hsTArray methods template hsTArray::hsTArray(int count) : fArray(nil) { hsTArray_ValidateCount(count); fUseCount = fTotalCount = count; if (count > 0) fArray = TRACKED_NEW T[count]; } template hsTArray::hsTArray(const hsTArray& src) : fArray(nil) { int count = src.Count(); fUseCount = fTotalCount = count; if (count > 0) { fArray = TRACKED_NEW T[count]; hsTArray_CopyForward(src.fArray, fArray, count); } } template hsTArray& hsTArray::operator=(const hsTArray& src) { if (this->Count() != src.Count()) this->SetCount(src.Count()); hsTArray_CopyForward(src.fArray, fArray, src.Count()); return *this; } // checks sizes and contents template bool hsTArray::operator==(const hsTArray& src) const { if (&src==this) return true; // it's me if (GetCount() != src.GetCount()) return false; // different sizes int i; for(i=0;i void hsTArray::Swap( hsTArray& src ) { UInt16 use, tot; T *array; use = fUseCount; tot = fTotalCount; array = fArray; fUseCount = src.fUseCount; fTotalCount = src.fTotalCount; fArray = src.fArray; src.fUseCount = use; src.fTotalCount = tot; src.fArray = array; } template void hsTArray::SetCountAndZero(int count) { if( fTotalCount <= count ) { int n = fTotalCount; Expand(count); } int i; for( i = 0; i < fTotalCount; i++ ) fArray[i] = nil; fUseCount = count; } template void hsTArray::ExpandAndZero(int count) { if( fTotalCount <= count ) { int n = fTotalCount; Expand(count); int i; for( i = n; i < count; i++ ) fArray[i] = nil; } if( fUseCount < count ) fUseCount = count; } template void hsTArray::SetCount(int count) { hsTArray_ValidateCount(count); if (count > fTotalCount) { if (fArray) delete[] fArray; fArray = TRACKED_NEW T[count]; fUseCount = fTotalCount = count; } fUseCount = count; } template void hsTArray::Expand(int NewCount) // New Count is Absolute not additional { hsTArray_ValidateCount(NewCount); if (NewCount > fTotalCount) // This is Expand not Shrink { T* newArray = TRACKED_NEW T[NewCount]; if (fArray != nil) { hsTArray_CopyForward(fArray, newArray, fUseCount); // hsTArray_CopyForward(&fArray[index], &newArray[index + count], fUseCount - index); delete[] fArray; } fArray = newArray; fTotalCount = NewCount; } } template void hsTArray::Reset() { if (fArray) { delete[] fArray; fArray = nil; fUseCount = fTotalCount = 0; } } template T hsTArray::Pop() { hsTArray_Validate(fUseCount > 0); fUseCount -= 1; return fArray[fUseCount]; } template const T& hsTArray::Peek() const { hsTArray_Validate(fUseCount > 0); return fArray[fUseCount-1]; } template int hsTArray::Find(const T& item) const { for (int i = 0; i < fUseCount; i++) if (fArray[i] == item) return i; return kMissingIndex; } template hsBool hsTArray::RemoveItem(const T& item) { for (int i = 0; i < fUseCount; i++) if (fArray[i] == item) { this->DecCount(i, 1); return true; } return false; } ////////// These are the private methods for hsTArray template void hsTArray_CopyForward(const T src[], T dst[], int count) { for (int i = 0; i < count; i++) dst[i] = src[i]; } template void hsTArray_CopyBackward(const T src[], T dst[], int count) { for (int i = count - 1; i >= 0; --i) dst[i] = src[i]; } template void hsTArray::IncCount(int index, int count) { int newCount = fUseCount + count; if (newCount > fTotalCount) { if (fTotalCount == 0) fTotalCount = newCount; GrowArraySize(newCount); // Sets new fTotalCount T* newArray = TRACKED_NEW T[fTotalCount]; if (fArray != nil) { hsTArray_CopyForward(fArray, newArray, index); hsTArray_CopyForward(&fArray[index], &newArray[index + count], fUseCount - index); delete[] fArray; } fArray = newArray; } else hsTArray_CopyBackward(&fArray[index], &fArray[index + count], fUseCount - index); fUseCount = newCount; } template void hsTArray::DecCount(int index, int count) { if (fUseCount == count) this->Reset(); else { hsTArray_CopyForward(&fArray[index + count], &fArray[index], fUseCount - index - count); fUseCount -= count; } } template T* hsTArray::ForEach(hsBool (*proc)(T&)) { for (int i = 0; i < fUseCount; i++) if (proc(fArray[i])) return &fArray[i]; return nil; } template T* hsTArray::ForEach(hsBool (*proc)(T&, void* p1), void* p1) { for (int i = 0; i < fUseCount; i++) if (proc(fArray[i], p1)) return &fArray[i]; return nil; } template T* hsTArray::ForEach(hsBool (*proc)(T&, void* p1, void* p2), void* p1, void* p2) { for (int i = 0; i < fUseCount; i++) if (proc(fArray[i], p1, p2)) return &fArray[i]; return nil; } //////////////////////////////////////////////////////////////////////////////////////////////// // // hsTArray's big brother. Only to be used when expecting more than 64K of elements. The // only difference between hsTArray and hsLargeArray is LargeArray uses 32 bit counters, // vs 16 bit counters for hsTArray. class hsLargeArrayBase { protected: UInt32 fUseCount; UInt32 fTotalCount; void GrowArraySize(UInt32 nSize); #ifdef HS_DEBUGTARRAY hsLargeArrayBase(); virtual char *GetTypeName(); virtual int GetSizeOf(); hsDlistNode *self; friend void LargeArrayStats(); virtual ~hsLargeArrayBase(); #else hsLargeArrayBase():fUseCount(0), fTotalCount(0){} #endif public: UInt32 GetNumAlloc() const { return fTotalCount; } }; template class hsLargeArray : public hsLargeArrayBase { T* fArray; inline void IncCount(int index, int count); inline void DecCount(int index, int count); #ifdef HS_DEBUGGING #define hsLargeArray_ValidateCount(count) hsAssert((count) >= 0, "bad count") #define hsLargeArray_ValidateIndex(index) hsAssert(unsigned(index) < fUseCount, "bad index") #define hsLargeArray_ValidateInsertIndex(index) hsAssert(unsigned(index) <= fUseCount, "bad index") #define hsLargeArray_Validate(condition) hsAssert(condition, "oops") #ifdef HS_DEBUGTARRAY virtual int GetSizeOf() { return sizeof(T); } #endif #else #define hsLargeArray_ValidateCount(count) #define hsLargeArray_ValidateIndex(index) #define hsLargeArray_ValidateInsertIndex(index) #define hsLargeArray_Validate(condition) #endif public: hsLargeArray() : fArray(nil) {} inline hsLargeArray(int count); inline hsLargeArray(const hsLargeArray& src); ~hsLargeArray() { if (fArray) delete[] fArray; } inline void Expand(int NewTotal); inline hsLargeArray& operator=(const hsLargeArray& src); // Swaps the internal data (including the fArray POINTER) with the data from the array given void Swap( hsLargeArray& src ); void Set(int index, const T& item) { hsLargeArray_ValidateIndex(index); fArray[index]=item; } const T& Get(int index) const { hsLargeArray_ValidateIndex(index); return fArray[index]; } T& operator[](int index) const { hsLargeArray_ValidateIndex(index); return fArray[index]; } T* FirstIter() { return &fArray[0]; } T* StopIter() { return &fArray[fUseCount]; } int Count() const { return fUseCount; } int GetCount() const { return fUseCount; } inline void SetCount(int count); inline void SetCountAndZero(int count); // does block clear, don't use for types with vtbl inline void ExpandAndZero(int count); // Same as set count and zero except won't decrease // usecount inline void Reset(); T* Insert(int index) { hsLargeArray_ValidateInsertIndex(index); this->IncCount(index, 1); return &fArray[index]; } void Insert(int index, const T& item) { hsLargeArray_ValidateInsertIndex(index); this->IncCount(index, 1); fArray[index] = item; } void Insert(int index, int count, T item[]) { hsLargeArray_ValidateCount(count); if (count > 0) { hsLargeArray_ValidateInsertIndex(index); this->IncCount(index, count); hsLargeArray_CopyForward(item, &fArray[index], count); } } // This guy is a duplicate for compatibility with the older hsDynamicArray<> void InsertAtIndex(int index, const T& item) { this->Insert(index, item); } void Remove(int index) { hsLargeArray_ValidateIndex(index); this->DecCount(index, 1); } void Remove(int index, int count) { hsLargeArray_ValidateCount(count); hsLargeArray_ValidateIndex(index); hsLargeArray_ValidateIndex(index + count - 1); this->DecCount(index, count); } hsBool RemoveItem(const T& item); T* Push() { this->IncCount(fUseCount, 1); return &fArray[fUseCount - 1]; } void Push(const T& item) { this->IncCount(fUseCount, 1); fArray[fUseCount - 1] = item; } void Append(const T& item) { this->IncCount(fUseCount, 1); fArray[fUseCount - 1] = item; } inline T Pop(); inline const T& Peek() const; enum { kMissingIndex = -1 }; int Find(const T& item) const; // returns kMissingIndex if not found inline T* ForEach(hsBool (*proc)(T&)); inline T* ForEach(hsBool (*proc)(T&, void* p1), void* p1); inline T* ForEach(hsBool (*proc)(T&, void* p1, void* p2), void* p1, void* p2); T* DetachArray() { T* array = fArray; fUseCount = fTotalCount = 0; fArray = nil; return array; } T* AcquireArray() { return fArray; } }; ////////////// Public hsLargeArray methods template hsLargeArray::hsLargeArray(int count) : fArray(nil) { hsLargeArray_ValidateCount(count); fUseCount = fTotalCount = count; if (count > 0) fArray = TRACKED_NEW T[count]; } template hsLargeArray::hsLargeArray(const hsLargeArray& src) : fArray(nil) { int count = src.Count(); fUseCount = fTotalCount = count; if (count > 0) { fArray = TRACKED_NEW T[count]; hsLargeArray_CopyForward(src.fArray, fArray, count); } } template hsLargeArray& hsLargeArray::operator=(const hsLargeArray& src) { if (this->Count() != src.Count()) this->SetCount(src.Count()); hsLargeArray_CopyForward(src.fArray, fArray, src.Count()); return *this; } template void hsLargeArray::Swap( hsLargeArray& src ) { UInt32 use, tot; T *array; use = fUseCount; tot = fTotalCount; array = fArray; fUseCount = src.fUseCount; fTotalCount = src.fTotalCount; fArray = src.fArray; src.fUseCount = use; src.fTotalCount = tot; src.fArray = array; } template void hsLargeArray::SetCountAndZero(int count) { if( fTotalCount <= count ) { int n = fTotalCount; Expand(count); } HSMemory::Clear(fArray, fTotalCount * sizeof( T )); fUseCount = count; } template void hsLargeArray::ExpandAndZero(int count) { if( fTotalCount <= count ) { int n = fTotalCount; Expand(count); HSMemory::Clear(fArray+n, (count - n) * sizeof( T )); } if( fUseCount < count ) fUseCount = count; } template void hsLargeArray::SetCount(int count) { hsLargeArray_ValidateCount(count); if (count > fTotalCount) { if (fArray) delete[] fArray; fArray = TRACKED_NEW T[count]; fUseCount = fTotalCount = count; } fUseCount = count; } template void hsLargeArray::Expand(int NewCount) // New Count is Absolute not additional { hsLargeArray_ValidateCount(NewCount); if (NewCount > fTotalCount) // This is Expand not Shrink { T* newArray = TRACKED_NEW T[NewCount]; if (fArray != nil) { hsLargeArray_CopyForward(fArray, newArray, fUseCount); // hsLargeArray_CopyForward(&fArray[index], &newArray[index + count], fUseCount - index); delete[] fArray; } fArray = newArray; fTotalCount = NewCount; } } template void hsLargeArray::Reset() { if (fArray) { delete[] fArray; fArray = nil; fUseCount = fTotalCount = 0; } } template T hsLargeArray::Pop() { hsLargeArray_Validate(fUseCount > 0); fUseCount -= 1; return fArray[fUseCount]; } template const T& hsLargeArray::Peek() const { hsLargeArray_Validate(fUseCount > 0); return fArray[fUseCount-1]; } template int hsLargeArray::Find(const T& item) const { for (int i = 0; i < fUseCount; i++) if (fArray[i] == item) return i; return kMissingIndex; } template hsBool hsLargeArray::RemoveItem(const T& item) { for (int i = 0; i < fUseCount; i++) if (fArray[i] == item) { this->DecCount(i, 1); return true; } return false; } ////////// These are the private methods for hsLargeArray template void hsLargeArray_CopyForward(const T src[], T dst[], int count) { for (int i = 0; i < count; i++) dst[i] = src[i]; } template void hsLargeArray_CopyBackward(const T src[], T dst[], int count) { for (int i = count - 1; i >= 0; --i) dst[i] = src[i]; } template void hsLargeArray::IncCount(int index, int count) { int newCount = fUseCount + count; if (newCount > fTotalCount) { if (fTotalCount == 0) fTotalCount = newCount; GrowArraySize(newCount); // Sets new fTotalCount T* newArray = TRACKED_NEW T[fTotalCount]; if (fArray != nil) { hsLargeArray_CopyForward(fArray, newArray, index); hsLargeArray_CopyForward(&fArray[index], &newArray[index + count], fUseCount - index); delete[] fArray; } fArray = newArray; } else hsLargeArray_CopyBackward(&fArray[index], &fArray[index + count], fUseCount - index); fUseCount = newCount; } template void hsLargeArray::DecCount(int index, int count) { if (fUseCount == count) this->Reset(); else { hsLargeArray_CopyForward(&fArray[index + count], &fArray[index], fUseCount - index - count); fUseCount -= count; } } template T* hsLargeArray::ForEach(hsBool (*proc)(T&)) { for (int i = 0; i < fUseCount; i++) if (proc(fArray[i])) return &fArray[i]; return nil; } template T* hsLargeArray::ForEach(hsBool (*proc)(T&, void* p1), void* p1) { for (int i = 0; i < fUseCount; i++) if (proc(fArray[i], p1)) return &fArray[i]; return nil; } template T* hsLargeArray::ForEach(hsBool (*proc)(T&, void* p1, void* p2), void* p1, void* p2) { for (int i = 0; i < fUseCount; i++) if (proc(fArray[i], p1, p2)) return &fArray[i]; return nil; } #endif