mirror of
https://foundry.openuru.org/gitblit/r/CWE-ou-minkata.git
synced 2025-07-20 04:09:16 +00:00
Change all CRLF-text files to LF-text files
to match H'uru for patching
This commit is contained in:
@ -1,298 +1,298 @@
|
||||
vs.1.1
|
||||
|
||||
dcl_position v0
|
||||
dcl_color v5
|
||||
dcl_texcoord0 v7
|
||||
dcl_texcoord1 v8
|
||||
dcl_texcoord2 v9
|
||||
|
||||
// Store our input position in world space in r6
|
||||
m4x3 r6, v0, c18; // v0 * l2w
|
||||
// Fill out our w (m4x3 doesn't touch w).
|
||||
mov r6.w, c13.z;
|
||||
|
||||
//
|
||||
|
||||
// Input diffuse v5 color is:
|
||||
// v5.r = overall transparency
|
||||
// v5.g = illumination
|
||||
// v5.b = overall wave scaling
|
||||
//
|
||||
// v5.a is:
|
||||
// v5.w = 1/(2.f * edge length)
|
||||
// So per wave filtering is:
|
||||
// min(max( (waveLen * v5.wwww) - 1), 0), 1.f);
|
||||
// So a wave effect starts dying out when the wave is 4 times the sampling frequency,
|
||||
// and is completely filtered at 2 times sampling frequency.
|
||||
|
||||
// We'd like to make this autocalculated based on the depth of the water.
|
||||
// The frequency filtering (v5.w) still needs to be calculated offline, because
|
||||
// it's dependent on edge length, but the first 3 filterings can be calculated
|
||||
// based on this vertex.
|
||||
// Basically, we want the transparency, reflection strength, and wave scaling
|
||||
// to go to zero as the water depth goes to zero. Linear falloffs are as good
|
||||
// a place to start as any.
|
||||
//
|
||||
// depth = waterlevel - r6.z => depth in feet (may be negative)
|
||||
// depthNorm = depth / depthFalloff => zero at watertable, one at depthFalloff beneath
|
||||
// atten = minAtten + depthNorm * (maxAtten - minAtten);
|
||||
// These are all vector ops.
|
||||
// This provides separate ramp ups for each of the channels (they reach full unfiltered
|
||||
// values at different depths), but doesn't provide separate controls for where they
|
||||
// go to zero (they all go to zero at zero depth). For that we need an offset. An offset
|
||||
// in feet (depth) is probably the most intuitive. So that changes the first calculation
|
||||
// of depth to:
|
||||
// depth = waterlevel - r6.z + offset
|
||||
// = (waterlevel + offset) - r6.z
|
||||
// And since we only need offsets for 3 channels, we can make the waterlevel constant
|
||||
// waterlevel[chan] = watertableheight + offset[chan],
|
||||
// with waterlevel.w = watertableheight.
|
||||
//
|
||||
// So:
|
||||
// c22 = waterlevel + offset
|
||||
// c23 = (maxAtten - minAtten) / depthFalloff
|
||||
// c24 = minAtten.
|
||||
// And in particular:
|
||||
// c22.w = waterlevel
|
||||
// c23.w = 1.f;
|
||||
// c24.w = 0;
|
||||
// So r4.w is the depth of this vertex in feet.
|
||||
|
||||
// Dot our position with our direction vectors.
|
||||
mul r0, c7, r6.xxxx;
|
||||
mad r0, c8, r6.yyyy, r0;
|
||||
|
||||
//
|
||||
// dist = mad( dist, kFreq.xyzw, kPhase.xyzw);
|
||||
mul r0, r0, c4;
|
||||
add r0, r0, c5;
|
||||
//
|
||||
// // Now we need dist mod'd into range [-Pi..Pi]
|
||||
// dist *= rcp(kTwoPi);
|
||||
rcp r4, c12.wwww;
|
||||
add r0, r0, c12.zzzz;
|
||||
mul r0, r0, r4;
|
||||
// dist = frac(dist);
|
||||
expp r1.y, r0.xxxx
|
||||
mov r1.x, r1.yyyy
|
||||
expp r1.y, r0.zzzz
|
||||
mov r1.z, r1.yyyy
|
||||
expp r1.y, r0.wwww
|
||||
mov r1.w, r1.yyyy
|
||||
expp r1.y, r0.yyyy
|
||||
// dist *= kTwoPi;
|
||||
mul r0, r1, c12.wwww;
|
||||
// dist += -kPi;
|
||||
sub r0, r0, c12.zzzz;
|
||||
|
||||
//
|
||||
// sincos(dist, sinDist, cosDist);
|
||||
// sin = r0 + r0^3 * vSin.y + r0^5 * vSin.z
|
||||
// cos = 1 + r0^2 * vCos.y + r0^4 * vCos.z
|
||||
mul r1, r0, r0; // r0^2
|
||||
mul r2, r1, r0; // r0^3 - probably stall
|
||||
mul r3, r1, r1; // r0^4
|
||||
mul r4, r1, r2; // r0^5
|
||||
mul r5, r2, r3; // r0^7
|
||||
|
||||
mul r1, r1, c11.yyyy; // r1 = r0^2 * vCos.y
|
||||
mad r2, r2, c10.yyyy, r0; // r2 = r0 + r0^3 * vSin.y
|
||||
add r1, r1, c11.xxxx; // r1 = 1 + r0^2 * vCos.y
|
||||
mad r2, r4, c10.zzzz, r2; // r2 = r0 + r0^3 * vSin.y + r0^5 * vSin.z
|
||||
mad r1, r3, c11.zzzz, r1; // r1 = 1 + r0^2 * vCos.y + r0^4 * vCos.z
|
||||
|
||||
// r0^7 & r0^6 terms
|
||||
mul r4, r4, r0; // r0^6
|
||||
mad r2, r5, c10.wwww, r2;
|
||||
mad r1, r4, c11.wwww, r1;
|
||||
|
||||
// Calc our depth based filtering here into r4 (because we don't use it again
|
||||
// after here, and we need our filtering shortly).
|
||||
sub r4, c22, r6.zzzz;
|
||||
mul r4, r4, c23;
|
||||
add r4, r4, c24;
|
||||
// Clamp .xyz to range [0..1]
|
||||
min r4.xyz, r4, c13.zzzz;
|
||||
max r4.xyz, r4, c13.xxxx;
|
||||
//mov r4.xyz, c13.xxx; // HACKTEST
|
||||
|
||||
// Calc our filter (see above).
|
||||
mul r11, v5.wwww, c21;
|
||||
max r11, r11, c13.xxxx;
|
||||
min r11, r11, c13.zzzz;
|
||||
|
||||
//mov r2, r1;
|
||||
// r2 == sinDist
|
||||
// r1 == cosDist
|
||||
// sinDist *= filter;
|
||||
mul r2, r2, r11;
|
||||
// sinDist *= kAmplitude.xyzw
|
||||
mul r2, r2, c6;
|
||||
// height = dp4(sinDist, kOne);
|
||||
// accumPos.z += height; (but accumPos.z is currently 0).
|
||||
dp4 r8.x, r2, c13.zzzz;
|
||||
mul r8.y, r8.x, r4.z;
|
||||
add r8.z, r8.y, c22.w;
|
||||
max r6.z, r6.z, r8.z;
|
||||
// r8.x == wave height relative to 0
|
||||
// r8.y == dampened wave relative to 0
|
||||
// r8.z == dampened wave height in world space
|
||||
// r6.z == wave height clamped to never go beneath ground level
|
||||
//
|
||||
// cosDist *= kFreq.xyzw;
|
||||
mul r1, r1, c4;
|
||||
// cosDist *= kAmplitude.xyzw; // Combine?
|
||||
mul r1, r1, c6;
|
||||
// cosDist *= filter;
|
||||
mul r1, r1, r11;
|
||||
//
|
||||
// accumCos = (0, 0, 0, 0);
|
||||
mov r7, c13.xxxz;
|
||||
// temp = dp4( cosDist, toCenter_X );
|
||||
// accumCos.x += temp.xxxx; (but accumCos = (0,0,0,0)
|
||||
dp4 r7.x, r1, -c7
|
||||
//
|
||||
// temp = dp4( cosDist, toCenter_Y );
|
||||
// accumCos.y += temp.xxxx;
|
||||
dp4 r7.y, r1, -c8
|
||||
//
|
||||
// }
|
||||
//
|
||||
// accumBin = (1, 0, -accumCos.x);
|
||||
// accumTan = (0, 1, -accumCos.y);
|
||||
// accumNorm = (accumCos.x, accumCos.y, 1);
|
||||
mov r11, c13.xxzx;
|
||||
add r11, r11, r7.xyzz;
|
||||
dp3 r10.x, r11, r11;
|
||||
rsq r10.x, r10.x;
|
||||
mul r11, r11, r10.xxxx;
|
||||
|
||||
//
|
||||
// Add in our scrunch (offset in X/Y plane).
|
||||
// Scale down our scrunch amount by the wave scaling
|
||||
mul r10.x, c9.y, r4.z;
|
||||
mad r6.xy, r11.xy, r10.xx, r6.xy;
|
||||
|
||||
// Bias our vert up a bit to compensate for precision errors.
|
||||
// In particular, our filter coefficients are coming in as
|
||||
// interpolated bytes, so there's bound to be a lot of slop
|
||||
// from that. We've got a free slot in c25.x, so we'll use that.
|
||||
// A better implementation would be to bias and scale our screen
|
||||
// vert, effectively pushing the vert toward the camera without
|
||||
// actually moving it, but this is easier and might work just
|
||||
// as well.
|
||||
add r6.z, r6.z, c25.x;
|
||||
|
||||
//
|
||||
// // Transform position to screen
|
||||
//
|
||||
//
|
||||
//m4x4 oPos, r6, c0; // ADDFOG
|
||||
m4x4 r9, r6, c0;
|
||||
add r10.x, r9.w, c29.x;
|
||||
mul oFog, r10.x, c29.y;
|
||||
//mov oFog.x, c13.y;
|
||||
mov oPos, r9;
|
||||
|
||||
// Calculate our normal scrunch and apply to our cosines.
|
||||
mul r2.x, r6.z, c9.x;
|
||||
add r2.x, r2.x, c13.z;
|
||||
mul r2.x, r2.x, r4.z;
|
||||
mul r7.xy, r7.xy, r2.xx;
|
||||
|
||||
// Now onto texture coordinate generation.
|
||||
//
|
||||
// First is the usual texture transform
|
||||
mov r11.zw, c13.zzzz;
|
||||
dp4 r11.x, v7, c14;
|
||||
dp4 r11.y, v7, c15;
|
||||
mov oT0, r11;
|
||||
|
||||
// Calculate our basis vectors as input into our tex3x3vspec
|
||||
// This would be like:
|
||||
//add r1, c13.zxxx, r7.zzxz;
|
||||
//add r2, c13.xzxx, r7.zzyz;
|
||||
//sub r3, c13.xxzz, r7.xyzz;
|
||||
// BUT =>
|
||||
// Now r1-r3 are surface2world, but we still need to fold
|
||||
// in texture2surface. That's imbedded in our uv's v8,v9, plus
|
||||
// the normal we just computed into r11.
|
||||
// So the full matrix multiply surface2world * texture2surface would be:
|
||||
// | r1.v8 r1.v9 r1.(0,0,1) |
|
||||
// | r2.v8 r2.v9 r2.(0,0,1) |
|
||||
// | r3.v8 r3.v9 r3.(0,0,1) |
|
||||
// But we notice that
|
||||
// r1 = (1, 0, r7.x)
|
||||
// r2 = (0, 1, r7.y)
|
||||
// r3 = (-r7.x, -r7.y, 1)
|
||||
// and also:
|
||||
// r7.z == v8.z == v9.z == 0
|
||||
// and r7.w == 1.0
|
||||
//
|
||||
// Considering the zeros, and doing the matrix multiply by hand, we get
|
||||
// the final matrix of
|
||||
// | v8.x v9.x r7.x |
|
||||
// | v8.y v9.y r7.y |
|
||||
// | -dp3(r7,v8) -dp3(r7,v9) 1 |
|
||||
// So we wind up not needing r1-r3 at all
|
||||
add r1, v8.xzzz, r7.zzxw;
|
||||
mov r1.y, v9.x;
|
||||
|
||||
add r2, v8.yzzz, r7.zzxw;
|
||||
mov r2.y, v9.y;
|
||||
|
||||
dp3 r3.x, -r7, v8;
|
||||
dp3 r3.y, -r7, v9;
|
||||
mov r3.zw, r7.ww;
|
||||
|
||||
// Following section is debug only to skip the per-vert tangent space axes.
|
||||
//add r1, c13.zxxx, r7.zzxw;
|
||||
//add r2, c13.xzxx, r7.zzyw;
|
||||
//
|
||||
//mov r3.x, -r7.x;
|
||||
//mov r3.y, -r7.y;
|
||||
//mov r3.zw, c13.zz;
|
||||
|
||||
// See vs_WaveFixedFin6.inl for derivation of the following
|
||||
sub r0, r6, c27; // c27 is camera position.
|
||||
dp3 r10.x, r0, r0;
|
||||
rsq r10.x, r10.x;
|
||||
mul r0, r0, r10.xxxx;
|
||||
|
||||
dp3 r10.x, r0, c28; // c28 is kEnvAdjust
|
||||
mad r10.y, r10.x, r10.x, -c28.w;
|
||||
|
||||
rsq r9.x, r10.y;
|
||||
|
||||
mad r10.z, r10.y, r9.x, r10.x;
|
||||
|
||||
mad r0.xyz, r0, r10.zzz, -c28.xyz;
|
||||
|
||||
mov r1.w, -r0.x;
|
||||
mov r2.w, -r0.y;
|
||||
mov r3.w, -r0.z;
|
||||
|
||||
// Now r1-r3 are texture2world, with the eye-ray vector in .w. We just
|
||||
// need to normalize them and bung them into output UV's 1-3.
|
||||
// Note we're accounting for our environment map being flipped from
|
||||
// D3D (and all rational thought) by putting r2 into UV3 and r3 into UV2.
|
||||
mov r10.w, c13.z;
|
||||
dp3 r10.x, r1, r1;
|
||||
rsq r10.x, r10.x;
|
||||
mul oT1, r1, r10.xxxw;
|
||||
|
||||
dp3 r10.x, r3, r3;
|
||||
rsq r10.x, r10.x;
|
||||
mul oT2, r3, r10.xxxw;
|
||||
//mul oT3, r3, r10.xxxw; // YZHACK
|
||||
|
||||
dp3 r10.x, r2, r2;
|
||||
rsq r10.x, r10.x;
|
||||
mul oT3, r2, r10.xxxw;
|
||||
//mul oT2, r2, r10.xxxw;
|
||||
|
||||
// Output color is vertex green
|
||||
// Output alpha is vertex red (vtx alpha is used for wave filtering)
|
||||
// Whole thing modulated by material color/opacity.
|
||||
mul oD0, v5.yyyx, c26;
|
||||
|
||||
vs.1.1
|
||||
|
||||
dcl_position v0
|
||||
dcl_color v5
|
||||
dcl_texcoord0 v7
|
||||
dcl_texcoord1 v8
|
||||
dcl_texcoord2 v9
|
||||
|
||||
// Store our input position in world space in r6
|
||||
m4x3 r6, v0, c18; // v0 * l2w
|
||||
// Fill out our w (m4x3 doesn't touch w).
|
||||
mov r6.w, c13.z;
|
||||
|
||||
//
|
||||
|
||||
// Input diffuse v5 color is:
|
||||
// v5.r = overall transparency
|
||||
// v5.g = illumination
|
||||
// v5.b = overall wave scaling
|
||||
//
|
||||
// v5.a is:
|
||||
// v5.w = 1/(2.f * edge length)
|
||||
// So per wave filtering is:
|
||||
// min(max( (waveLen * v5.wwww) - 1), 0), 1.f);
|
||||
// So a wave effect starts dying out when the wave is 4 times the sampling frequency,
|
||||
// and is completely filtered at 2 times sampling frequency.
|
||||
|
||||
// We'd like to make this autocalculated based on the depth of the water.
|
||||
// The frequency filtering (v5.w) still needs to be calculated offline, because
|
||||
// it's dependent on edge length, but the first 3 filterings can be calculated
|
||||
// based on this vertex.
|
||||
// Basically, we want the transparency, reflection strength, and wave scaling
|
||||
// to go to zero as the water depth goes to zero. Linear falloffs are as good
|
||||
// a place to start as any.
|
||||
//
|
||||
// depth = waterlevel - r6.z => depth in feet (may be negative)
|
||||
// depthNorm = depth / depthFalloff => zero at watertable, one at depthFalloff beneath
|
||||
// atten = minAtten + depthNorm * (maxAtten - minAtten);
|
||||
// These are all vector ops.
|
||||
// This provides separate ramp ups for each of the channels (they reach full unfiltered
|
||||
// values at different depths), but doesn't provide separate controls for where they
|
||||
// go to zero (they all go to zero at zero depth). For that we need an offset. An offset
|
||||
// in feet (depth) is probably the most intuitive. So that changes the first calculation
|
||||
// of depth to:
|
||||
// depth = waterlevel - r6.z + offset
|
||||
// = (waterlevel + offset) - r6.z
|
||||
// And since we only need offsets for 3 channels, we can make the waterlevel constant
|
||||
// waterlevel[chan] = watertableheight + offset[chan],
|
||||
// with waterlevel.w = watertableheight.
|
||||
//
|
||||
// So:
|
||||
// c22 = waterlevel + offset
|
||||
// c23 = (maxAtten - minAtten) / depthFalloff
|
||||
// c24 = minAtten.
|
||||
// And in particular:
|
||||
// c22.w = waterlevel
|
||||
// c23.w = 1.f;
|
||||
// c24.w = 0;
|
||||
// So r4.w is the depth of this vertex in feet.
|
||||
|
||||
// Dot our position with our direction vectors.
|
||||
mul r0, c7, r6.xxxx;
|
||||
mad r0, c8, r6.yyyy, r0;
|
||||
|
||||
//
|
||||
// dist = mad( dist, kFreq.xyzw, kPhase.xyzw);
|
||||
mul r0, r0, c4;
|
||||
add r0, r0, c5;
|
||||
//
|
||||
// // Now we need dist mod'd into range [-Pi..Pi]
|
||||
// dist *= rcp(kTwoPi);
|
||||
rcp r4, c12.wwww;
|
||||
add r0, r0, c12.zzzz;
|
||||
mul r0, r0, r4;
|
||||
// dist = frac(dist);
|
||||
expp r1.y, r0.xxxx
|
||||
mov r1.x, r1.yyyy
|
||||
expp r1.y, r0.zzzz
|
||||
mov r1.z, r1.yyyy
|
||||
expp r1.y, r0.wwww
|
||||
mov r1.w, r1.yyyy
|
||||
expp r1.y, r0.yyyy
|
||||
// dist *= kTwoPi;
|
||||
mul r0, r1, c12.wwww;
|
||||
// dist += -kPi;
|
||||
sub r0, r0, c12.zzzz;
|
||||
|
||||
//
|
||||
// sincos(dist, sinDist, cosDist);
|
||||
// sin = r0 + r0^3 * vSin.y + r0^5 * vSin.z
|
||||
// cos = 1 + r0^2 * vCos.y + r0^4 * vCos.z
|
||||
mul r1, r0, r0; // r0^2
|
||||
mul r2, r1, r0; // r0^3 - probably stall
|
||||
mul r3, r1, r1; // r0^4
|
||||
mul r4, r1, r2; // r0^5
|
||||
mul r5, r2, r3; // r0^7
|
||||
|
||||
mul r1, r1, c11.yyyy; // r1 = r0^2 * vCos.y
|
||||
mad r2, r2, c10.yyyy, r0; // r2 = r0 + r0^3 * vSin.y
|
||||
add r1, r1, c11.xxxx; // r1 = 1 + r0^2 * vCos.y
|
||||
mad r2, r4, c10.zzzz, r2; // r2 = r0 + r0^3 * vSin.y + r0^5 * vSin.z
|
||||
mad r1, r3, c11.zzzz, r1; // r1 = 1 + r0^2 * vCos.y + r0^4 * vCos.z
|
||||
|
||||
// r0^7 & r0^6 terms
|
||||
mul r4, r4, r0; // r0^6
|
||||
mad r2, r5, c10.wwww, r2;
|
||||
mad r1, r4, c11.wwww, r1;
|
||||
|
||||
// Calc our depth based filtering here into r4 (because we don't use it again
|
||||
// after here, and we need our filtering shortly).
|
||||
sub r4, c22, r6.zzzz;
|
||||
mul r4, r4, c23;
|
||||
add r4, r4, c24;
|
||||
// Clamp .xyz to range [0..1]
|
||||
min r4.xyz, r4, c13.zzzz;
|
||||
max r4.xyz, r4, c13.xxxx;
|
||||
//mov r4.xyz, c13.xxx; // HACKTEST
|
||||
|
||||
// Calc our filter (see above).
|
||||
mul r11, v5.wwww, c21;
|
||||
max r11, r11, c13.xxxx;
|
||||
min r11, r11, c13.zzzz;
|
||||
|
||||
//mov r2, r1;
|
||||
// r2 == sinDist
|
||||
// r1 == cosDist
|
||||
// sinDist *= filter;
|
||||
mul r2, r2, r11;
|
||||
// sinDist *= kAmplitude.xyzw
|
||||
mul r2, r2, c6;
|
||||
// height = dp4(sinDist, kOne);
|
||||
// accumPos.z += height; (but accumPos.z is currently 0).
|
||||
dp4 r8.x, r2, c13.zzzz;
|
||||
mul r8.y, r8.x, r4.z;
|
||||
add r8.z, r8.y, c22.w;
|
||||
max r6.z, r6.z, r8.z;
|
||||
// r8.x == wave height relative to 0
|
||||
// r8.y == dampened wave relative to 0
|
||||
// r8.z == dampened wave height in world space
|
||||
// r6.z == wave height clamped to never go beneath ground level
|
||||
//
|
||||
// cosDist *= kFreq.xyzw;
|
||||
mul r1, r1, c4;
|
||||
// cosDist *= kAmplitude.xyzw; // Combine?
|
||||
mul r1, r1, c6;
|
||||
// cosDist *= filter;
|
||||
mul r1, r1, r11;
|
||||
//
|
||||
// accumCos = (0, 0, 0, 0);
|
||||
mov r7, c13.xxxz;
|
||||
// temp = dp4( cosDist, toCenter_X );
|
||||
// accumCos.x += temp.xxxx; (but accumCos = (0,0,0,0)
|
||||
dp4 r7.x, r1, -c7
|
||||
//
|
||||
// temp = dp4( cosDist, toCenter_Y );
|
||||
// accumCos.y += temp.xxxx;
|
||||
dp4 r7.y, r1, -c8
|
||||
//
|
||||
// }
|
||||
//
|
||||
// accumBin = (1, 0, -accumCos.x);
|
||||
// accumTan = (0, 1, -accumCos.y);
|
||||
// accumNorm = (accumCos.x, accumCos.y, 1);
|
||||
mov r11, c13.xxzx;
|
||||
add r11, r11, r7.xyzz;
|
||||
dp3 r10.x, r11, r11;
|
||||
rsq r10.x, r10.x;
|
||||
mul r11, r11, r10.xxxx;
|
||||
|
||||
//
|
||||
// Add in our scrunch (offset in X/Y plane).
|
||||
// Scale down our scrunch amount by the wave scaling
|
||||
mul r10.x, c9.y, r4.z;
|
||||
mad r6.xy, r11.xy, r10.xx, r6.xy;
|
||||
|
||||
// Bias our vert up a bit to compensate for precision errors.
|
||||
// In particular, our filter coefficients are coming in as
|
||||
// interpolated bytes, so there's bound to be a lot of slop
|
||||
// from that. We've got a free slot in c25.x, so we'll use that.
|
||||
// A better implementation would be to bias and scale our screen
|
||||
// vert, effectively pushing the vert toward the camera without
|
||||
// actually moving it, but this is easier and might work just
|
||||
// as well.
|
||||
add r6.z, r6.z, c25.x;
|
||||
|
||||
//
|
||||
// // Transform position to screen
|
||||
//
|
||||
//
|
||||
//m4x4 oPos, r6, c0; // ADDFOG
|
||||
m4x4 r9, r6, c0;
|
||||
add r10.x, r9.w, c29.x;
|
||||
mul oFog, r10.x, c29.y;
|
||||
//mov oFog.x, c13.y;
|
||||
mov oPos, r9;
|
||||
|
||||
// Calculate our normal scrunch and apply to our cosines.
|
||||
mul r2.x, r6.z, c9.x;
|
||||
add r2.x, r2.x, c13.z;
|
||||
mul r2.x, r2.x, r4.z;
|
||||
mul r7.xy, r7.xy, r2.xx;
|
||||
|
||||
// Now onto texture coordinate generation.
|
||||
//
|
||||
// First is the usual texture transform
|
||||
mov r11.zw, c13.zzzz;
|
||||
dp4 r11.x, v7, c14;
|
||||
dp4 r11.y, v7, c15;
|
||||
mov oT0, r11;
|
||||
|
||||
// Calculate our basis vectors as input into our tex3x3vspec
|
||||
// This would be like:
|
||||
//add r1, c13.zxxx, r7.zzxz;
|
||||
//add r2, c13.xzxx, r7.zzyz;
|
||||
//sub r3, c13.xxzz, r7.xyzz;
|
||||
// BUT =>
|
||||
// Now r1-r3 are surface2world, but we still need to fold
|
||||
// in texture2surface. That's imbedded in our uv's v8,v9, plus
|
||||
// the normal we just computed into r11.
|
||||
// So the full matrix multiply surface2world * texture2surface would be:
|
||||
// | r1.v8 r1.v9 r1.(0,0,1) |
|
||||
// | r2.v8 r2.v9 r2.(0,0,1) |
|
||||
// | r3.v8 r3.v9 r3.(0,0,1) |
|
||||
// But we notice that
|
||||
// r1 = (1, 0, r7.x)
|
||||
// r2 = (0, 1, r7.y)
|
||||
// r3 = (-r7.x, -r7.y, 1)
|
||||
// and also:
|
||||
// r7.z == v8.z == v9.z == 0
|
||||
// and r7.w == 1.0
|
||||
//
|
||||
// Considering the zeros, and doing the matrix multiply by hand, we get
|
||||
// the final matrix of
|
||||
// | v8.x v9.x r7.x |
|
||||
// | v8.y v9.y r7.y |
|
||||
// | -dp3(r7,v8) -dp3(r7,v9) 1 |
|
||||
// So we wind up not needing r1-r3 at all
|
||||
add r1, v8.xzzz, r7.zzxw;
|
||||
mov r1.y, v9.x;
|
||||
|
||||
add r2, v8.yzzz, r7.zzxw;
|
||||
mov r2.y, v9.y;
|
||||
|
||||
dp3 r3.x, -r7, v8;
|
||||
dp3 r3.y, -r7, v9;
|
||||
mov r3.zw, r7.ww;
|
||||
|
||||
// Following section is debug only to skip the per-vert tangent space axes.
|
||||
//add r1, c13.zxxx, r7.zzxw;
|
||||
//add r2, c13.xzxx, r7.zzyw;
|
||||
//
|
||||
//mov r3.x, -r7.x;
|
||||
//mov r3.y, -r7.y;
|
||||
//mov r3.zw, c13.zz;
|
||||
|
||||
// See vs_WaveFixedFin6.inl for derivation of the following
|
||||
sub r0, r6, c27; // c27 is camera position.
|
||||
dp3 r10.x, r0, r0;
|
||||
rsq r10.x, r10.x;
|
||||
mul r0, r0, r10.xxxx;
|
||||
|
||||
dp3 r10.x, r0, c28; // c28 is kEnvAdjust
|
||||
mad r10.y, r10.x, r10.x, -c28.w;
|
||||
|
||||
rsq r9.x, r10.y;
|
||||
|
||||
mad r10.z, r10.y, r9.x, r10.x;
|
||||
|
||||
mad r0.xyz, r0, r10.zzz, -c28.xyz;
|
||||
|
||||
mov r1.w, -r0.x;
|
||||
mov r2.w, -r0.y;
|
||||
mov r3.w, -r0.z;
|
||||
|
||||
// Now r1-r3 are texture2world, with the eye-ray vector in .w. We just
|
||||
// need to normalize them and bung them into output UV's 1-3.
|
||||
// Note we're accounting for our environment map being flipped from
|
||||
// D3D (and all rational thought) by putting r2 into UV3 and r3 into UV2.
|
||||
mov r10.w, c13.z;
|
||||
dp3 r10.x, r1, r1;
|
||||
rsq r10.x, r10.x;
|
||||
mul oT1, r1, r10.xxxw;
|
||||
|
||||
dp3 r10.x, r3, r3;
|
||||
rsq r10.x, r10.x;
|
||||
mul oT2, r3, r10.xxxw;
|
||||
//mul oT3, r3, r10.xxxw; // YZHACK
|
||||
|
||||
dp3 r10.x, r2, r2;
|
||||
rsq r10.x, r10.x;
|
||||
mul oT3, r2, r10.xxxw;
|
||||
//mul oT2, r2, r10.xxxw;
|
||||
|
||||
// Output color is vertex green
|
||||
// Output alpha is vertex red (vtx alpha is used for wave filtering)
|
||||
// Whole thing modulated by material color/opacity.
|
||||
mul oD0, v5.yyyx, c26;
|
||||
|
||||
|
Reference in New Issue
Block a user