|
|
|
/*==LICENSE==*
|
|
|
|
|
|
|
|
CyanWorlds.com Engine - MMOG client, server and tools
|
|
|
|
Copyright (C) 2011 Cyan Worlds, Inc.
|
|
|
|
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
|
|
|
|
Additional permissions under GNU GPL version 3 section 7
|
|
|
|
|
|
|
|
If you modify this Program, or any covered work, by linking or
|
|
|
|
combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK,
|
|
|
|
NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent
|
|
|
|
JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK
|
|
|
|
(or a modified version of those libraries),
|
|
|
|
containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA,
|
|
|
|
PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG
|
|
|
|
JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the
|
|
|
|
licensors of this Program grant you additional
|
|
|
|
permission to convey the resulting work. Corresponding Source for a
|
|
|
|
non-source form of such a combination shall include the source code for
|
|
|
|
the parts of OpenSSL and IJG JPEG Library used as well as that of the covered
|
|
|
|
work.
|
|
|
|
|
|
|
|
You can contact Cyan Worlds, Inc. by email legal@cyan.com
|
|
|
|
or by snail mail at:
|
|
|
|
Cyan Worlds, Inc.
|
|
|
|
14617 N Newport Hwy
|
|
|
|
Mead, WA 99021
|
|
|
|
|
|
|
|
*==LICENSE==*/
|
|
|
|
#ifndef hsGGeometry3Defined
|
|
|
|
#define hsGGeometry3Defined
|
|
|
|
|
|
|
|
#include "hsTypes.h"
|
|
|
|
struct hsVector3;
|
|
|
|
struct hsPoint3;
|
|
|
|
struct hsScalarTriple;
|
|
|
|
class hsStream;
|
|
|
|
|
|
|
|
/*
|
|
|
|
If value is already close to hsScalar1, then this is a good approx. of 1/sqrt(value)
|
|
|
|
*/
|
|
|
|
static inline hsScalar hsInvSqrt(hsScalar value)
|
|
|
|
{
|
|
|
|
hsScalar guess;
|
|
|
|
hsScalar threeOverTwo = hsScalar1 + hsScalarHalf;
|
|
|
|
|
|
|
|
value = hsScalarDiv2(value);
|
|
|
|
guess = threeOverTwo - value; // with initial guess = 1.0
|
|
|
|
|
|
|
|
// repeat this line for better approx
|
|
|
|
guess = hsScalarMul(guess, threeOverTwo - hsScalarMul(hsScalarMul(value, guess), guess));
|
|
|
|
guess = hsScalarMul(guess, threeOverTwo - hsScalarMul(hsScalarMul(value, guess), guess));
|
|
|
|
|
|
|
|
return guess;
|
|
|
|
}
|
|
|
|
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
struct hsScalarTriple
|
|
|
|
{
|
|
|
|
//protected:
|
|
|
|
// hsScalarTriple() : fX(privateData[0]), fY(privateData[1]), fZ(privateData[2]) {}
|
|
|
|
// hsScalarTriple(hsScalar x, hsScalar y, hsScalar z)
|
|
|
|
// : fX(privateData[0]), fY(privateData[1]), fZ(privateData[2]) { fX = x, fY = y, fZ = z; }
|
|
|
|
//
|
|
|
|
// union {
|
|
|
|
// u_long128 privateTemp;
|
|
|
|
// hsScalar privateData[4];
|
|
|
|
// };
|
|
|
|
//public:
|
|
|
|
//
|
|
|
|
// int operator=(const hsScalarTriple& o) { privateTemp = o.privateTemp; }
|
|
|
|
// hsScalarTriple(const hsScalarTriple& o) : fX(privateData[0]), fY(privateData[1]), fZ(privateData[2])
|
|
|
|
// { *this = o; }
|
|
|
|
//
|
|
|
|
// hsScalar& fX;
|
|
|
|
// hsScalar& fY;
|
|
|
|
// hsScalar& fZ;
|
|
|
|
protected:
|
|
|
|
hsScalarTriple() {}
|
|
|
|
hsScalarTriple(hsScalar x, hsScalar y, hsScalar z) : fX(x), fY(y), fZ(z) {}
|
|
|
|
public:
|
|
|
|
hsScalar fX, fY, fZ;
|
|
|
|
|
|
|
|
hsScalarTriple* Set(hsScalar x, hsScalar y, hsScalar z) { fX= x; fY = y; fZ = z; return this;}
|
|
|
|
hsScalarTriple* Set(const hsScalarTriple *p) { fX = p->fX; fY = p->fY; fZ = p->fZ; return this;}
|
|
|
|
|
|
|
|
hsScalar InnerProduct(const hsScalarTriple &p) const;
|
|
|
|
hsScalar InnerProduct(const hsScalarTriple *p) const;
|
|
|
|
|
|
|
|
// hsScalarTriple LERP(hsScalarTriple &other, hsScalar t);
|
|
|
|
#if HS_SCALAR_IS_FIXED
|
|
|
|
hsScalar Magnitude() const;
|
|
|
|
hsScalar MagnitudeSquared() const;
|
|
|
|
#else
|
|
|
|
hsScalar Magnitude() const { return hsSquareRoot(MagnitudeSquared()); }
|
|
|
|
hsScalar MagnitudeSquared() const { return (fX * fX + fY * fY + fZ * fZ); }
|
|
|
|
#endif
|
|
|
|
|
|
|
|
hsBool IsEmpty() const { return fX == 0 && fY == 0 && fZ == 0; }
|
|
|
|
|
|
|
|
hsScalar operator[](int i) const;
|
|
|
|
hsScalar& operator[](int i);
|
|
|
|
|
|
|
|
void Read(hsStream *stream);
|
|
|
|
void Write(hsStream *stream) const;
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
inline hsScalar& hsScalarTriple::operator[] (int i)
|
|
|
|
{
|
|
|
|
hsAssert(i >=0 && i <3, "Bad index for hsScalarTriple::operator[]");
|
|
|
|
return *(&fX + i);
|
|
|
|
}
|
|
|
|
inline hsScalar hsScalarTriple::operator[] (int i) const
|
|
|
|
{
|
|
|
|
hsAssert(i >=0 && i <3, "Bad index for hsScalarTriple::operator[]");
|
|
|
|
return *(&fX + i);
|
|
|
|
}
|
|
|
|
inline hsScalar hsScalarTriple::InnerProduct(const hsScalarTriple &p) const
|
|
|
|
{
|
|
|
|
hsScalar tmp = fX*p.fX;
|
|
|
|
tmp += fY*p.fY;
|
|
|
|
tmp += fZ*p.fZ;
|
|
|
|
return tmp;
|
|
|
|
}
|
|
|
|
inline hsScalar hsScalarTriple::InnerProduct(const hsScalarTriple *p) const
|
|
|
|
{
|
|
|
|
hsScalar tmp = fX*p->fX;
|
|
|
|
tmp += fY*p->fY;
|
|
|
|
tmp += fZ*p->fZ;
|
|
|
|
return tmp;
|
|
|
|
}
|
|
|
|
|
|
|
|
//inline hsScalarTriple hsScalarTriple::LERP(hsScalarTriple &other, hsScalar t)
|
|
|
|
//{
|
|
|
|
// hsScalarTriple p = other - this;
|
|
|
|
// p = p / t;
|
|
|
|
// return this + p;
|
|
|
|
//}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
struct hsPoint3 : public hsScalarTriple {
|
|
|
|
hsPoint3() {};
|
|
|
|
hsPoint3(hsScalar x, hsScalar y, hsScalar z) : hsScalarTriple(x,y,z) {}
|
|
|
|
explicit hsPoint3(const hsScalarTriple& p) : hsScalarTriple(p) {}
|
|
|
|
|
|
|
|
hsPoint3* Set(hsScalar x, hsScalar y, hsScalar z) { return (hsPoint3*)this->hsScalarTriple::Set(x,y,z);}
|
|
|
|
hsPoint3* Set(const hsScalarTriple* p) { return (hsPoint3*)this->hsScalarTriple::Set(p) ;}
|
|
|
|
|
|
|
|
friend inline hsPoint3 operator+(const hsPoint3& s, const hsPoint3& t);
|
|
|
|
friend inline hsPoint3 operator+(const hsPoint3& s, const hsVector3& t);
|
|
|
|
friend inline hsPoint3 operator-(const hsPoint3& s, const hsPoint3& t);
|
|
|
|
friend inline hsPoint3 operator-(const hsPoint3& s);
|
|
|
|
friend inline hsPoint3 operator*(const hsScalar& s, const hsPoint3& t);
|
|
|
|
friend inline hsPoint3 operator*(const hsPoint3& t, const hsScalar& s);
|
|
|
|
friend inline hsPoint3 operator/(const hsPoint3& t, const hsScalar& s);
|
|
|
|
hsBool operator==(const hsPoint3& ss) const
|
|
|
|
{
|
|
|
|
return (ss.fX == fX && ss.fY == fY && ss.fZ == fZ);
|
|
|
|
}
|
|
|
|
hsBool operator!=(const hsPoint3& ss) const { return !(*this == ss); }
|
|
|
|
hsPoint3 &operator+=(const hsScalarTriple &s) { fX += s.fX; fY += s.fY; fZ += s.fZ; return *this; }
|
|
|
|
hsPoint3 &operator*=(const hsScalar s) { fX *= s; fY *= s; fZ *= s; return *this; }
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
struct hsVector3 : public hsScalarTriple {
|
|
|
|
|
|
|
|
hsVector3() {};
|
|
|
|
hsVector3(hsScalar x, hsScalar y, hsScalar z) : hsScalarTriple(x,y,z) {}
|
|
|
|
explicit hsVector3(const hsScalarTriple& p) : hsScalarTriple(p) { }
|
|
|
|
hsVector3(const hsPoint3 *p1, const hsPoint3 *p2) {
|
|
|
|
fX = p1->fX - p2->fX, fY= p1->fY - p2->fY, fZ = p1->fZ - p2->fZ; }
|
|
|
|
|
|
|
|
hsVector3* Set(hsScalar x, hsScalar y, hsScalar z) { return (hsVector3*)hsScalarTriple::Set(x,y,z); }
|
|
|
|
hsVector3* Set(const hsScalarTriple* p) { return (hsVector3*)hsScalarTriple::Set(p) ;}
|
|
|
|
hsVector3* Set(const hsScalarTriple* p1, const hsScalarTriple* p2) { return Set(p1->fX-p2->fX,p1->fY-p2->fY,p1->fZ-p2->fZ);}
|
|
|
|
|
|
|
|
void Normalize()
|
|
|
|
{
|
|
|
|
hsScalar length = this->Magnitude();
|
|
|
|
// hsIfDebugMessage(length == 0, "Err: Normalizing hsVector3 of length 0", 0);
|
|
|
|
if (length == 0)
|
|
|
|
return;
|
|
|
|
hsScalar invMag = hsScalarInvert(length);
|
|
|
|
|
|
|
|
fX = hsScalarMul(fX, invMag);
|
|
|
|
fY = hsScalarMul(fY, invMag);
|
|
|
|
fZ = hsScalarMul(fZ, invMag);
|
|
|
|
}
|
|
|
|
inline void Renormalize() // if the vector is already close to unit length
|
|
|
|
{
|
|
|
|
hsScalar mag2 = *this * *this;
|
|
|
|
hsIfDebugMessage(mag2 == 0, "Err: Renormalizing hsVector3 of length 0", 0);
|
|
|
|
if (mag2 == 0)
|
|
|
|
return;
|
|
|
|
hsScalar invMag = hsInvSqrt(mag2);
|
|
|
|
|
|
|
|
fX = hsScalarMul(fX, invMag);
|
|
|
|
fY = hsScalarMul(fY, invMag);
|
|
|
|
fZ = hsScalarMul(fZ, invMag);
|
|
|
|
}
|
|
|
|
|
|
|
|
// hsVector3 &Sub(const hsPoint3& s, const hsPoint3& t)
|
|
|
|
// { Set(s.fX - t.fX, s.fY - t.fY, s.fZ - t.fZ);
|
|
|
|
// return *this; };
|
|
|
|
friend inline hsVector3 operator+(const hsVector3& s, const hsVector3& t);
|
|
|
|
friend inline hsVector3 operator-(const hsVector3& s, const hsVector3& t);
|
|
|
|
friend inline hsVector3 operator-(const hsVector3& s);
|
|
|
|
friend inline hsVector3 operator*(const hsScalar& s, const hsVector3& t);
|
|
|
|
friend inline hsVector3 operator*(const hsVector3& t, const hsScalar& s);
|
|
|
|
friend inline hsVector3 operator/(const hsVector3& t, const hsScalar& s);
|
|
|
|
friend inline hsScalar operator*(const hsVector3& t, const hsVector3& s);
|
|
|
|
friend hsVector3 operator%(const hsVector3& t, const hsVector3& s);
|
|
|
|
#if 0 // Havok reeks
|
|
|
|
friend hsBool32 operator==(const hsVector3& s, const hsVector3& t)
|
|
|
|
{
|
|
|
|
return (s.fX == t.fX && s.fY == t.fY && s.fZ == t.fZ);
|
|
|
|
}
|
|
|
|
#else // Havok reeks
|
|
|
|
hsBool operator==(const hsVector3& ss) const
|
|
|
|
{
|
|
|
|
return (ss.fX == fX && ss.fY == fY && ss.fZ == fZ);
|
|
|
|
}
|
|
|
|
#endif // Havok reeks
|
|
|
|
hsVector3 &operator+=(const hsScalarTriple &s) { fX += s.fX; fY += s.fY; fZ += s.fZ; return *this; }
|
|
|
|
hsVector3 &operator-=(const hsScalarTriple &s) { fX -= s.fX; fY -= s.fY; fZ -= s.fZ; return *this; }
|
|
|
|
hsVector3 &operator*=(const hsScalar s) { fX *= s; fY *= s; fZ *= s; return *this; }
|
|
|
|
hsVector3 &operator/=(const hsScalar s) { fX /= s; fY /= s; fZ /= s; return *this; }
|
|
|
|
};
|
|
|
|
|
|
|
|
struct hsPoint4 {
|
|
|
|
hsScalar fX, fY, fZ, fW;
|
|
|
|
hsPoint4() {}
|
|
|
|
hsPoint4(hsScalar x, hsScalar y, hsScalar z, hsScalar w) : fX(x), fY(y), fZ(z), fW(w) {}
|
|
|
|
hsScalar& operator[](int i);
|
|
|
|
hsScalar operator[](int i) const;
|
|
|
|
|
|
|
|
hsPoint4& operator=(const hsPoint3&p) { Set(p.fX, p.fY, p.fZ, hsScalar1); return *this; }
|
|
|
|
|
|
|
|
hsPoint4* Set(hsScalar x, hsScalar y, hsScalar z, hsScalar w)
|
|
|
|
{ fX = x; fY = y; fZ = z; fW = w; return this; }
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
inline hsVector3 operator+(const hsVector3& s, const hsVector3& t)
|
|
|
|
{
|
|
|
|
hsVector3 result;
|
|
|
|
|
|
|
|
return *result.Set(s.fX + t.fX, s.fY + t.fY, s.fZ + t.fZ);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline hsVector3 operator-(const hsVector3& s, const hsVector3& t)
|
|
|
|
{
|
|
|
|
hsVector3 result;
|
|
|
|
|
|
|
|
return *result.Set(s.fX - t.fX, s.fY - t.fY, s.fZ - t.fZ);
|
|
|
|
}
|
|
|
|
|
|
|
|
// unary minus
|
|
|
|
inline hsVector3 operator-(const hsVector3& s)
|
|
|
|
{
|
|
|
|
hsVector3 result;
|
|
|
|
return *result.Set(-s.fX, -s.fY, -s.fZ);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline hsVector3 operator*(const hsVector3& s, const hsScalar& t)
|
|
|
|
{
|
|
|
|
hsVector3 result;
|
|
|
|
return *result.Set(hsScalarMul(s.fX, t), hsScalarMul(s.fY, t), hsScalarMul(s.fZ, t));
|
|
|
|
}
|
|
|
|
|
|
|
|
inline hsVector3 operator/(const hsVector3& s, const hsScalar& t)
|
|
|
|
{
|
|
|
|
hsVector3 result;
|
|
|
|
return *result.Set(hsScalarDiv(s.fX, t), hsScalarDiv(s.fY, t), hsScalarDiv(s.fZ, t));
|
|
|
|
}
|
|
|
|
|
|
|
|
inline hsVector3 operator*(const hsScalar& t, const hsVector3& s)
|
|
|
|
{
|
|
|
|
hsVector3 result;
|
|
|
|
|
|
|
|
return *result.Set(hsScalarMul(s.fX, t), hsScalarMul(s.fY, t), hsScalarMul(s.fZ, t));
|
|
|
|
}
|
|
|
|
|
|
|
|
inline hsScalar operator*(const hsVector3& t, const hsVector3& s)
|
|
|
|
{
|
|
|
|
return hsScalarMul(t.fX, s.fX) + hsScalarMul(t.fY, s.fY) + hsScalarMul(t.fZ, s.fZ);
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
inline hsPoint3 operator+(const hsPoint3& s, const hsPoint3& t)
|
|
|
|
{
|
|
|
|
hsPoint3 result;
|
|
|
|
|
|
|
|
return *result.Set(s.fX + t.fX, s.fY + t.fY, s.fZ + t.fZ);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline hsPoint3 operator+(const hsPoint3& s, const hsVector3& t)
|
|
|
|
{
|
|
|
|
hsPoint3 result;
|
|
|
|
|
|
|
|
return *result.Set(s.fX + t.fX, s.fY + t.fY, s.fZ + t.fZ);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline hsPoint3 operator-(const hsPoint3& s, const hsPoint3& t)
|
|
|
|
{
|
|
|
|
hsPoint3 result;
|
|
|
|
|
|
|
|
return *result.Set(s.fX - t.fX, s.fY - t.fY, s.fZ - t.fZ);
|
|
|
|
}
|
|
|
|
|
|
|
|
// unary -
|
|
|
|
inline hsPoint3 operator-(const hsPoint3& s)
|
|
|
|
{
|
|
|
|
hsPoint3 result;
|
|
|
|
return *result.Set(-s.fX, -s.fY, -s.fZ);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline hsPoint3 operator-(const hsPoint3& s, const hsVector3& t)
|
|
|
|
{
|
|
|
|
hsPoint3 result;
|
|
|
|
|
|
|
|
return *result.Set(s.fX - t.fX, s.fY - t.fY, s.fZ - t.fZ);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline hsPoint3 operator*(const hsPoint3& s, const hsScalar& t)
|
|
|
|
{
|
|
|
|
hsPoint3 result;
|
|
|
|
return *result.Set(hsScalarMul(s.fX, t), hsScalarMul(s.fY, t), hsScalarMul(s.fZ, t));
|
|
|
|
}
|
|
|
|
|
|
|
|
inline hsPoint3 operator/(const hsPoint3& s, const hsScalar& t)
|
|
|
|
{
|
|
|
|
hsPoint3 result;
|
|
|
|
return *result.Set(hsScalarDiv(s.fX, t), hsScalarDiv(s.fY, t), hsScalarDiv(s.fZ, t));
|
|
|
|
}
|
|
|
|
|
|
|
|
inline hsPoint3 operator*(const hsScalar& t, const hsPoint3& s)
|
|
|
|
{
|
|
|
|
hsPoint3 result;
|
|
|
|
|
|
|
|
return *result.Set(hsScalarMul(s.fX, t), hsScalarMul(s.fY, t), hsScalarMul(s.fZ, t));
|
|
|
|
}
|
|
|
|
|
|
|
|
inline hsScalar hsPoint4::operator[] (int i) const
|
|
|
|
{
|
|
|
|
hsAssert(i >=0 && i <4, "Bad index for hsPoint4::operator[]");
|
|
|
|
return *(&fX + i);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline hsScalar& hsPoint4::operator[] (int i)
|
|
|
|
{
|
|
|
|
hsAssert(i >=0 && i <4, "Bad index for hsPoint4::operator[]");
|
|
|
|
return *(&fX + i);
|
|
|
|
}
|
|
|
|
|
|
|
|
typedef hsPoint3 hsGUv;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
struct hsPointNorm {
|
|
|
|
hsPoint3 fPos;
|
|
|
|
hsVector3 fNorm;
|
|
|
|
|
|
|
|
void Read(hsStream* s) { fPos.Read(s); fNorm.Read(s); }
|
|
|
|
void Write(hsStream* s) const { fPos.Write(s); fNorm.Write(s); }
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
struct hsPlane3 {
|
|
|
|
hsVector3 fN;
|
|
|
|
hsScalar fD;
|
|
|
|
|
|
|
|
hsPlane3() { }
|
|
|
|
hsPlane3(const hsVector3* nrml, hsScalar d)
|
|
|
|
{ fN = *nrml; fD=d; }
|
|
|
|
hsPlane3(const hsPoint3* pt, const hsVector3* nrml)
|
|
|
|
{ fN = *nrml; fD = -pt->InnerProduct(nrml); }
|
|
|
|
|
|
|
|
// create plane from a triangle (assumes clockwise winding of vertices)
|
|
|
|
hsPlane3(const hsPoint3* pt1, const hsPoint3* pt2, const hsPoint3* pt3);
|
|
|
|
|
|
|
|
hsVector3 GetNormal() const { return fN; }
|
|
|
|
|
|
|
|
void Read(hsStream *stream);
|
|
|
|
void Write(hsStream *stream) const;
|
|
|
|
};
|
|
|
|
|
|
|
|
#endif
|