You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

443 lines
12 KiB

/*==LICENSE==*
CyanWorlds.com Engine - MMOG client, server and tools
Copyright (C) 2011 Cyan Worlds, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Additional permissions under GNU GPL version 3 section 7
If you modify this Program, or any covered work, by linking or
combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK,
NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent
JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK
(or a modified version of those libraries),
containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA,
PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG
JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the
licensors of this Program grant you additional
permission to convey the resulting work. Corresponding Source for a
non-source form of such a combination shall include the source code for
the parts of OpenSSL and IJG JPEG Library used as well as that of the covered
work.
You can contact Cyan Worlds, Inc. by email legal@cyan.com
or by snail mail at:
Cyan Worlds, Inc.
14617 N Newport Hwy
Mead, WA 99021
*==LICENSE==*/
#include "HeadSpin.h"
#include "hsAffineParts.h"
#include "plInterp/hsInterp.h"
#include "hsStream.h"
#include "plProfile.h"
#define PL_OPTIMIZE_COMPOSE
inline void QuatTo3Vectors(const hsQuat& q, hsVector3* const v)
{
v[0][0] = 1.0f - 2.0f*q.fY*q.fY - 2.0f*q.fZ*q.fZ;
v[0][1] = 2.0f*q.fX*q.fY - 2.0f*q.fW*q.fZ;
v[0][2] = 2.0f*q.fX*q.fZ + 2.0f*q.fW*q.fY;
v[1][0] = 2.0f*q.fX*q.fY + 2.0f*q.fW*q.fZ;
v[1][1] = 1.0f - 2.0f*q.fX*q.fX - 2.0f*q.fZ*q.fZ;
v[1][2] = 2.0f*q.fY*q.fZ - 2.0f*q.fW*q.fX;
v[2][0] = 2.0f*q.fX*q.fZ - 2.0f*q.fW*q.fY;
v[2][1] = 2.0f*q.fY*q.fZ + 2.0f*q.fW*q.fX;
v[2][2] = 1.0f - 2.0f*q.fX*q.fX - 2.0f*q.fY*q.fY;
}
inline void QuatTo3VectorsTranspose(const hsQuat& q, hsVector3* const v)
{
v[0][0] = 1.0f - 2.0f*q.fY*q.fY - 2.0f*q.fZ*q.fZ;
v[1][0] = 2.0f*q.fX*q.fY - 2.0f*q.fW*q.fZ;
v[2][0] = 2.0f*q.fX*q.fZ + 2.0f*q.fW*q.fY;
v[0][1] = 2.0f*q.fX*q.fY + 2.0f*q.fW*q.fZ;
v[1][1] = 1.0f - 2.0f*q.fX*q.fX - 2.0f*q.fZ*q.fZ;
v[2][1] = 2.0f*q.fY*q.fZ - 2.0f*q.fW*q.fX;
v[0][2] = 2.0f*q.fX*q.fZ - 2.0f*q.fW*q.fY;
v[1][2] = 2.0f*q.fY*q.fZ + 2.0f*q.fW*q.fX;
v[2][2] = 1.0f - 2.0f*q.fX*q.fX - 2.0f*q.fY*q.fY;
}
//
// Constructors
// Convert from Gems struct for now
//
hsAffineParts::hsAffineParts(gemAffineParts *ap)
{
AP_SET((*this), (*ap));
}
//
//
//
hsAffineParts::hsAffineParts()
{
}
//
//
//
void hsAffineParts::Reset()
{
fT.Set(0,0,0);
fQ.Identity();
fU.Identity();
fK.Set(1,1,1);
fF = 1.0;
}
plProfile_CreateTimer("Compose", "Affine", Compose);
plProfile_CreateTimer("ComposeInv", "Affine", ComposeInv);
//
// Create an affine matrix from the various parts
//
// AffineParts:
// Vector t; /* Translation components */
// Quat q; /* Essential rotation */
// Quat u; /* Stretch rotation */
// Vector k; /* Stretch factors */
// float f; /* Sign of determinant */
//
// A matrix M is decomposed by : M = T F R U K Utranspose.
// T is the translate mat.
// F is +-Identity (to flip the rotation or not).
// R is the rot matrix.
// U is the stretch matrix.
// K is the scale factor matrix.
//
void hsAffineParts::ComposeMatrix(hsMatrix44 *out) const
{
plProfile_BeginTiming(Compose);
#ifndef PL_OPTIMIZE_COMPOSE
// Built U matrix
hsMatrix44 U;
fU.MakeMatrix(&U);
// Build scale factor matrix
hsMatrix44 K;
K.MakeScaleMat(&fK);
// Build Utranspose matrix
hsMatrix44 Utp;
U.GetTranspose(&Utp);
// Build R matrix
hsMatrix44 R;
fQ.MakeMatrix(&R);
// Build flip matrix
// hsAssert(fF == 1.0 || fF == -1.0, "Invalid flip portion of affine parts");
hsMatrix44 F;
if (fF==-1.0)
{
hsVector3 s;
s.Set(-1,-1,-1);
F.MakeScaleMat(&s);
}
else
F.Reset();
// Build translate matrix
hsMatrix44 T;
T.MakeTranslateMat(&fT);
//
// Concat mats
//
*out = K * Utp;
*out = U * (*out);
*out = R * (*out); // Q
*out = F * (*out);
*out = T * (*out); // Translate happens last
#else // PL_OPTIMIZE_COMPOSE
// M = T F R U K Ut,
// but these are mostly very sparse matrices. So rather
// than construct the full 6 matrices and concatenate them,
// we'll work out by hand what the non-zero results will be.
// T = |1 0 0 Tx|
// |0 1 0 Ty|
// |0 0 1 Tz|
// F = |f 0 0 0|
// |0 f 0 0|
// |0 0 f 0|, where f is either 1 or -1
// R = |R00 R01 R02 0|
// |R10 R11 R12 0|
// |R20 R21 R22 0|
// U = |U00 U01 U02 0|
// |U10 U11 U12 0|
// |U20 U21 U22 0|
// K = |Sx 0 0 0|
// |0 Sy 0 0|
// |0 0 Sz 0|
// Ut = |U00 U10 U20 0|
// |U01 U11 U21 0|
// |U02 U12 U22 0|, where Uij is from matrix U
//
// So, K * Ut =
// |Sx*U00 Sx*U10 Sx*U20 0|
// |Sy*U01 Sy*U11 Sy*U21 0|
// |Sz*U02 Sz*U12 Sz*U22 0|
//
// U * (K * Ut) =
// | U0 dot S*U0 U0 dot S*U1 U0 dot S*U2 0|
// | U1 dot S*U0 U1 dot S*U1 U1 dot S*U2 0|
// | U2 dot S*U0 U2 dot S*U1 U2 dot S*U2 0|
//
// Let's call that matrix UK
//
// Now R * U * K * Ut = R * UK =
// | R0 dot UKc0 R0 dot UKc1 R0 dot UKc2 0|
// | R1 dot UKc0 R1 dot UKc1 R1 dot UKc2 0|
// | R2 dot UKc0 R2 dot UKc1 R2 dot UKc2 0|, where UKci is column i from UK
//
// if f is -1, we negate the matrix we have so far, else we don't. We can
// accomplish this cleanly by just negating the scale vector S if f == -1.
//
// Since the translate is last, we can just stuff it into the 4th column.
//
// Since we only ever use UK as column vectors, we'll just construct it
// into 3 vectors representing the columns.
//
// The quat MakeMatrix function is pretty efficient, but it does a little more work
// than it has to filling out the whole matrix when we only need the 3x3 rotation,
// and we'd rather have it in the form of vectors anyway, so we'll use our own
// quat to 3 vectors function here.
hsVector3 U[3];
QuatTo3Vectors(fU, U);
int i, j;
hsVector3 UKt[3];
for( i = 0; i < 3; i++ )
{
for( j = 0; j < 3; j++ )
{
// SU[j] = (fK.fX * U[j].fX, fK.fY * U[j].fY, fK.fZ * U[j].fZ)
UKt[j][i] = U[i].fX * fK.fX * U[j].fX
+ U[i].fY * fK.fY * U[j].fY
+ U[i].fZ * fK.fZ * U[j].fZ;
}
}
hsVector3 R[3];
QuatTo3Vectors(fQ, R);
hsScalar f = fF < 0 ? -1.f : 1.f;
for( i = 0; i < 3; i++ )
{
for( j = 0; j < 3; j++ )
{
out->fMap[i][j] = R[i].InnerProduct(UKt[j]) * f;
}
out->fMap[i][3] = fT[i];
}
out->fMap[3][0] = out->fMap[3][1] = out->fMap[3][2] = 0.f;
out->fMap[3][3] = 1.f;
out->NotIdentity();
#endif // PL_OPTIMIZE_COMPOSE
plProfile_EndTiming(Compose);
}
void hsAffineParts::ComposeInverseMatrix(hsMatrix44 *out) const
{
plProfile_BeginTiming(Compose);
#ifndef PL_OPTIMIZE_COMPOSE
// Built U matrix
hsMatrix44 U;
fU.Conjugate().MakeMatrix(&U);
// Build scale factor matrix
hsMatrix44 K;
hsVector3 invK;
invK.Set(hsScalarInvert(fK.fX),hsScalarInvert(fK.fY),hsScalarInvert(fK.fZ));
K.MakeScaleMat(&invK);
// Build Utranspose matrix
hsMatrix44 Utp;
U.GetTranspose(&Utp);
// Build R matrix
hsMatrix44 R;
fQ.Conjugate().MakeMatrix(&R);
// Build flip matrix
// hsAssert(fF == 1.0 || fF == -1.0, "Invalid flip portion of affine parts");
hsMatrix44 F;
if (fF==-1.0)
{
hsVector3 s;
s.Set(-1,-1,-1);
F.MakeScaleMat(&s);
}
else
F.Reset();
// Build translate matrix
hsMatrix44 T;
T.MakeTranslateMat(&-fT);
//
// Concat mats
//
*out = Utp * K;
*out = (*out) * U;
*out = (*out) * R;
*out = (*out) * F;
*out = (*out) * T;
#else // PL_OPTIMIZE_COMPOSE
// Same kind of thing here, except now M = Ut K U R F T
// and again
// T = |1 0 0 Tx|
// |0 1 0 Ty|
// |0 0 1 Tz|
// F = |f 0 0 0|
// |0 f 0 0|
// |0 0 f 0|, where f is either 1 or -1
// R = |R00 R01 R02 0|
// |R10 R11 R12 0|
// |R20 R21 R22 0|
// U = |U00 U01 U02 0|
// |U10 U11 U12 0|
// |U20 U21 U22 0|
// K = |Sx 0 0 0|
// |0 Sy 0 0|
// |0 0 Sz 0|
// Ut = |U00 U10 U20 0|
// |U01 U11 U21 0|
// |U02 U12 U22 0|, where Uij is from matrix U
//
// So, Ut * K =
// |U00*Sx U10*Sy U20*Sz 0|
// |U01*Sx U11*Sy U21*Sz 0|
// |U02*Sx U12*Sy U22*Sz 0|
//
// (Ut * K) * U = UK =
// |Ut0*S dot Ut0 Ut0*S dot Ut1 Ut0*S dot Ut2 0|
// |Ut1*S dot Ut0 Ut1*S dot Ut1 Ut1*S dot Ut2 0|
// |Ut2*S dot Ut0 Ut2*S dot Ut1 Ut2*S dot Ut2 0|
//
// (((Ut * K) * U) * R)[i][j] = UK[i] dot Rc[j]
//
// Again we'll stuff the flip into the scale.
//
// Now, because the T is on the other end of the concat (closest
// to the vertex), we can't just stuff it in. If Mr is the
// rotation part of the final matrix (Ut * K * U * R * F), then
// the translation components M[i][3] = Mr[i] dot T.
//
//
hsVector3 Ut[3];
QuatTo3VectorsTranspose(fU.Conjugate(), Ut);
int i, j;
hsVector3 invK;
invK.Set(hsScalarInvert(fK.fX),hsScalarInvert(fK.fY),hsScalarInvert(fK.fZ));
hsVector3 UK[3];
for( i = 0; i < 3; i++ )
{
for( j = 0; j < 3; j++ )
{
// SUt[i] = (Ut[i].fX * invK.fX, Ut[i].fY * invK.fY, Ut[i].fZ * invK.fZ)
// So SUt[i].InnerProduct(Ut[j]) ==
// Ut[i].fX * invK.fX * Ut[j].fX
// + Ut[i].fY * invK.fY * Ut[j].fY
// + Ut[i].fZ * invK.fZ * Ut[j].fZ
UK[i][j] = Ut[i].fX * invK.fX * Ut[j].fX
+ Ut[i].fY * invK.fY * Ut[j].fY
+ Ut[i].fZ * invK.fZ * Ut[j].fZ;
}
}
hsVector3 Rt[3];
QuatTo3VectorsTranspose(fQ.Conjugate(), Rt);
hsScalar f = fF < 0 ? -1.f : 1.f;
for( i = 0; i < 3; i++ )
{
for( j = 0; j < 3; j++ )
{
out->fMap[i][j] = UK[i].InnerProduct(Rt[j]) * f;
}
out->fMap[i][3] = -(fT.InnerProduct((hsPoint3*)(&out->fMap[i])));
}
out->fMap[3][0] = out->fMap[3][1] = out->fMap[3][2] = 0.f;
out->fMap[3][3] = 1.f;
out->NotIdentity();
#endif // PL_OPTIMIZE_COMPOSE
plProfile_EndTiming(Compose);
}
//
// Given 2 affineparts structs and a p value (between 0-1),
// compute a new affine parts.
//
void hsAffineParts::SetFromInterp(const hsAffineParts &ap1, const hsAffineParts &ap2, float p)
{
hsAssert(p>=0.0 && p<=1.0, "Interpolate param must be 0-1");
#if 0
// Debug
float rad1,rad2, rad3;
hsVector3 axis1, axis2, axis3;
k1->fQ.GetAngleAxis(&rad1, &axis1);
k2->fQ.GetAngleAxis(&rad2, &axis2);
fQ.GetAngleAxis(&rad3, &axis3);
#endif
hsInterp::LinInterp(&ap1, &ap2, p, this);
}
//
// Read
//
void hsAffineParts::Read(hsStream *stream)
{
fT.Read(stream);
fQ.Read(stream);
fU.Read(stream);
fK.Read(stream);
fF = stream->ReadLEFloat();
}
//
// Write
//
void hsAffineParts::Write(hsStream *stream)
{
fT.Write(stream);
fQ.Write(stream);
fU.Write(stream);
fK.Write(stream);
stream->WriteLEFloat(fF);
}