450 lines
15 KiB

vs.1.1
dcl_position v0
dcl_color v5
// Store our input position in world space in r6
m4x3 r6, v0, c21; // v0 * l2w
// Fill out our w (m4x3 doesn't touch w).
mov r6.w, c16.zzzz;
//
// Input diffuse v5 color is:
// v5.r = overall transparency
// v5.g = reflection strength (transparency)
// v5.b = overall wave scaling
//
// v5.a is:
// v5.w = 1/(2.f * edge length)
// So per wave filtering is:
// min(max( (waveLen * v5.wwww) - 1), 0), 1.f);
// So a wave effect starts dying out when the wave is 4 times the sampling frequency,
// and is completely filtered at 2 times sampling frequency.
// We'd like to make this autocalculated based on the depth of the water.
// The frequency filtering (v5.w) still needs to be calculated offline, because
// it's dependent on edge length, but the first 3 filterings can be calculated
// based on this vertex.
// Basically, we want the transparency, reflection strength, and wave scaling
// to go to zero as the water depth goes to zero. Linear falloffs are as good
// a place to start as any.
//
// depth = waterlevel - r6.z => depth in feet (may be negative)
// depthNorm = depth / depthFalloff => zero at watertable, one at depthFalloff beneath
// atten = minAtten + depthNorm * (maxAtten - minAtten);
// These are all vector ops.
// This provides separate ramp ups for each of the channels (they reach full unfiltered
// values at different depths), but doesn't provide separate controls for where they
// go to zero (they all go to zero at zero depth). For that we need an offset. An offset
// in feet (depth) is probably the most intuitive. So that changes the first calculation
// of depth to:
// depth = waterlevel - r6.z + offset
// = (waterlevel + offset) - r6.z
// And since we only need offsets for 3 channels, we can make the waterlevel constant
// waterlevel[chan] = watertableheight + offset[chan],
// with waterlevel.w = watertableheight.
//
// So:
// c25 = waterlevel + offset
// c26 = (maxAtten - minAtten) / depthFalloff
// c27 = minAtten.
// And in particular:
// c25.w = waterlevel
// c26.w = 1.f;
// c27.w = 0;
// So r4.w is the depth of this vertex in feet.
// Dot our position with our direction vectors.
mul r0, c8, r6.xxxx;
mad r0, c9, r6.yyyy, r0;
//
// dist = mad( dist, kFreq.xyzw, kPhase.xyzw);
mul r0, r0, c5;
add r0, r0, c6;
//
// // Now we need dist mod'd into range [-Pi..Pi]
// dist *= rcp(kTwoPi);
rcp r4, c15.wwww;
add r0, r0, c15.zzzz;
mul r0, r0, r4;
// dist = frac(dist);
expp r1.y, r0.xxxx
mov r1.x, r1.yyyy
expp r1.y, r0.zzzz
mov r1.z, r1.yyyy
expp r1.y, r0.wwww
mov r1.w, r1.yyyy
expp r1.y, r0.yyyy
// dist *= kTwoPi;
mul r0, r1, c15.wwww;
// dist += -kPi;
sub r0, r0, c15.zzzz;
//
// sincos(dist, sinDist, cosDist);
// sin = r0 + r0^3 * vSin.y + r0^5 * vSin.z
// cos = 1 + r0^2 * vCos.y + r0^4 * vCos.z
mul r1, r0, r0; // r0^2
mul r2, r1, r0; // r0^3 - probably stall
mul r3, r1, r1; // r0^4
mul r4, r1, r2; // r0^5
mul r5, r2, r3; // r0^7
mul r1, r1, c14.yyyy; // r1 = r0^2 * vCos.y
mad r2, r2, c13.yyyy, r0; // r2 = r0 + r0^3 * vSin.y
add r1, r1, c14.xxxx; // r1 = 1 + r0^2 * vCos.y
mad r2, r4, c13.zzzz, r2; // r2 = r0 + r0^3 * vSin.y + r0^5 * vSin.z
mad r1, r3, c14.zzzz, r1; // r1 = 1 + r0^2 * vCos.y + r0^4 * vCos.z
// r0^7 & r0^6 terms
mul r4, r4, r0; // r0^6
mad r2, r5, c13.wwww, r2;
mad r1, r4, c14.wwww, r1;
// Calc our depth based filtering here into r4 (because we don't use it again
// after here, and we need our filtering shortly).
sub r4, c25, r6.zzzz;
mul r4, r4, c26;
add r4, r4, c27;
// Clamp .xyz to range [0..1]
min r4.xyz, r4, c16.zzzz;
max r4.xyz, r4, c16.xxxx;
// Calc our filter (see above).
mul r11, v5.wwww, c24;
max r11, r11, c16.xxxx;
min r11, r11, c16.zzzz;
//mov r2, r1;
// r2 == sinDist
// r1 == cosDist
// sinDist *= filter;
mul r2, r2, r11;
// sinDist *= kAmplitude.xyzw
mul r2, r2, c7;
// height = dp4(sinDist, kOne);
// accumPos.z += height; (but accumPos.z is currently 0).
dp4 r8.x, r2, c16.zzzz;
mul r8.y, r8.x, r4.z;
add r8.z, r8.y, c25.w;
max r6.z, r6.z, r8.z; // CLAMP
// r8.x == wave height relative to 0
// r8.y == dampened wave relative to 0
// r8.z == dampened wave height in world space
// r6.z == wave height clamped to never go beneath ground level
//
// cosDist *= kFreq.xyzw;
mul r1, r1, c5;
// cosDist *= kAmplitude.xyzw; // Combine?
mul r1, r1, c7;
// cosDist *= filter;
mul r1, r1, r11;
//
// accumCos = (0, 0, 0, 0);
mov r7, c16.xxxx;
// temp = dp4( cosDist, toCenter_X );
// accumCos.x += temp.xxxx; (but accumCos = (0,0,0,0)
dp4 r7.x, r1, -c8
//
// temp = dp4( cosDist, toCenter_Y );
// accumCos.y += temp.xxxx;
dp4 r7.y, r1, -c9
//
// }
//
// accumBin = (1, 0, -accumCos.x);
// accumTan = (0, 1, -accumCos.y);
// accumNorm = (accumCos.x, accumCos.y, 1);
mov r11, c16.xxzx;
add r11, r11, r7;
dp3 r10.x, r11, r11;
rsq r10.x, r10.x;
mul r11, r11, r10.xxxx;
//
// // Scrunch in based on computed (normalized) normal
// temp = mul( accumNorm, kNegScrunchScale ); // kNegScrunchScale = (-scrunchScale, -scrunchScale, 0, 0);
// accumPos += temp;
//dp3 r10.x, r11, c18.zxw; // winddir.x, winddir.y, 0, 0 // NUKE
// r10.x tells us whether our normal is opposed to the wind.
// If opposed, r10.x = 0, else r10.x = 1.f;
// We'll use this to kill the Scrunch on the back sides of waves.
// We use it for position right here, and then again for the
// normal just down a bit further.
//slt r10.x, r10.x, c16.x; // NUKE
//mov r10.x, c16.z; // HACKAGE NUKE
//mul r9, r10.xxxx, r11; // NUKE
// Add in our scrunch (offset in X/Y plane).
// Scale down our scrunch amount by the wave scaling
mul r10.x, c12.y, r4.z;
//mov r10.x, c12.y; // NUKETEST TAKEOUT
mad r6.xy, r11.xy, r10.xx, r6.xy;
// mul r6.z, r6.z, r10.xxxx; DEBUG
// mad r6, r11, c12.yyzz, r6;
// accumNorm = mul (accumNorm, kScrunchScale ); // kScrunchScale = (scrunchScale, scrunchScale, 1, 1);
// accumCos *= (scrunchScale, scrunchScale, 0, 0);
mul r2.x, r6.z, c12.x;
//mad r2.x, r2.x, r10.x, c16.z; NUKE
add r2.x, r2.x, c16.z;
mul r2.x, r2.x, r4.z; // HACKAGE // NUKETEST BACKIN
// mul r7, r7, c12.xxzz;
mul r7.xy, r7.xy, r2.xx;
// This is actually wrong, but useful right now for visualizing the generated coords.
// See below for correct version.
sub r3, c16.xxzz, r7.xyzz;
//mov oD0, r3; // SEENORM
dp3 r8.x, r3, c18.zxww; // WAVEFACE
mul r8.x, r8.x, c12.w; // WAVEFACE
max r8.x, r8.x, c16.x; // WAVEFACE
min r8.x, r8.x, c16.z; // WAVEFACE
//mov r9.x, c12.z;
//add r9.x, r9.x, -c16.z;
//mad r8.x, r9.x, r8.x, c16.z; // WAVEFACE
mul r8.x, r8.x, -c16.z;
add r8.x, r8.x, c16.z;
// Normalize?
// We can either calculate an orthonormal basis from the
// computed normal, with Binormal = (0,1,0) X Normal, Tangent = Normal X (1,0,0),
// or compute our basis directly from the partial derivatives, with
// Binormal = (1, 0, -cosX), Tangent = (0, 1, -cosY), Normal = (cosX, cosY, 1)
//
// These work out to identically the same result, so we'll compute directly
// from the partials because it takes 2 fewer instructions.
//
// Note that our basis is NOT orthonormal. The Normal is equal to
// Binormal X Tangent, but Dot(Binormal, Tangent) != 0. The Binormal and Tangents
// are both correct tangents to the surface, and their projections on the XY plane
// are 90 degrees apart, but in 3-space, they are not orthogonal. Practical implications?
// Not really. I'm actually not really sure which is more "proper" for bump mapping.
//
// Note also that we add when we should subtract and subtract when we should
// add, so that r1, r2, r3 aren't Binormal, Tangent, Normal, but the rows
// of our transform, (Bx, Tx, Nx), (By, Ty, Ny), (Bz, Tz, Nz). See below for
// explanation.
//
// Binormal = Y % Normal
// Cross product3 is:
// mul res.xyz, a.yzx, b.zxy
// mad res.xyz, -a.zxy, b.yzx, res.xyz
// mul r1.xyz, c16.zxx, r3.zxy;
// mad r1.xyz, -c16.xxz, r3.yzx, r1.xyz;
// Tangent = Normal % X
// mul r2.xyz, r3.yzx, c16.xzx;
// mad r2.xyz, -r3.zxy, c16.xxz, r2;
add r1, c16.zxxx, r7.zzxz;
add r2, c16.xzxx, r7.zzyz;
// Note that we're swapping z and y to match our environment map tools in max.
// We do this through our normal map transform (oT1, oT2, oT3), making it
// a concatenation of:
//
// rotate about Z (blue) to turn our map into the wind
// windRot = | dirY -dirX 0 |
// | dirX dirY 0 |
// | 0 0 1 |
//
// swap our Y and Z axes to match our environment map
// swapYZ = | 1 0 0 |
// | 0 0 1 |
// | 0 1 0 |
//
// rotate the normal into the surface's tangent space basis
// basis = | Bx Tx Nx |
// | By Ty Ny |
// | Bz Tz Nz |
//
// Note that we've constucted the basis by taking advantage of the
// matrix being a pure rotation, as noted below, so r1, r2 and r3
// are actually constructed as:
// basis = | Bx -By -Bz |
// | -Tx Ty -Tz |
// | -Nx -Ny -Nz |
//
// Then the final normal map transform is:
//
// basis * swapYZ * windRot [ * normal ]
// sub r1.w, c17.x, r6.x;
// sub r2.w, c17.z, r6.z;
// sub r3.w, c17.y, r6.y;
// Big note here. All this math can blow up if the camera position
// is outside the environment sphere. It's assumed that's dealt
// with in the app setting up the constants. For that reason, the
// camera position used here might not be the real local camera position,
// which is needed for the angular attenuation, so we burn another constant
// with our pseudo-camera position. To restrain the pseudo-camera from
// leaving the sphere, we make:
// pseudoPos = envCenter + (realPos - envCenter) * dist * R / (dist + R)
// where dist = |realPos - envCenter|
// So, our "finitized" eyeray is:
// camPos + D * t - envCenter = D * t - (envCenter - camPos)
// with
// D = (pos - camPos) / |pos - camPos| // normalized usual eyeray
// and
// t = D dot F + sqrt( (D dot F)^2 - G )
// with
// F = (envCenter - camPos) => c19.xyz
// G = F^2 - R^2 => c19.w
// R = environment radius. => unused
//
// This all derives from the positive root of equation
// (camPos + (pos - camPos) * t - envCenter)^2 = R^2,
// In other words, where on a sphere of radius R centered about envCenter
// does the ray from the real camera position through this point hit.
//
// Note that F, G, and R are all constants (one point, two scalars).
//
// So first we calculate D into r0,
// then D dot F into r10.x,
// then (D dot F)^2 - G into r10.y
// then rsq( (D dot F)^2 - G ) into r9.x;
// then t = r10.z = r10.x + r10.y * r9.x;
// and
// r0 = D * t - (envCenter - camPos)
// = r0 * r10.zzzz - F;
//
sub r0, r6, c17;
dp3 r10.x, r0, r0;
rsq r10.x, r10.x;
mul r0, r0, r10.xxxx; // r0 = D
dp3 r10.x, r0, c19; // r10.x = D dot F
mad r10.y, r10.x, r10.x, -c19.w; // r10.y = (D dot F)^2 - G
rsq r9.x, r10.y; // r9.x = 1/SQRT((D dot F)^2 - G)
mad r10.z, r10.y, r9.x, r10.x; // r10.z = D dot F + SQRT((D dot F)^2 - G)
mad r0.xyz, r0, r10.zzz, -c19.xyz; // r0.xyz = D * t - (envCenter - camPos)
mov r1.w, -r0.x;
mov r2.w, -r0.y;
mov r3.w, -r0.z;
// Now rotate our basis vectors into the wind
// This should be redone, and put our wind direction into
// the water texture.
dp3 r0.x, r1, c18.xyww;
dp3 r0.y, r1, c18.zxww;
mov r1.xy, r0;
dp3 r0.x, r2, c18.xyww;
dp3 r0.y, r2, c18.zxww;
mov r2.xy, r0;
dp3 r0.x, r3, c18.xyww;
dp3 r0.y, r3, c18.zxww;
mov r3.xy, r0;
mov r0.zw, c16.zzxz;
dp3 r0.x, r1, r1;
rsq r0.x, r0.x;
mul oT1, r1.xyzw, r0.xxxw;
// mul r8, r1.xyzw, r0.xxxw; // VISUAL
dp3 r0.x, r2, r2;
rsq r0.x, r0.x;
mul oT3, r2.xyzw, r0.xxxw;
// mul r9, r2.xyzw, r0.xxxw; // VISUAL
dp3 r0.x, r3, r3;
rsq r0.x, r0.x;
mul oT2, r3.xyzw, r0.xxxw;
// mul r9, r3.xyzw, r0.xxxw; // VISUAL
// mul r3, r3.xzyw, r0.xxxw;
// mul r3.xy, r3, -c16.zzzz;
/*
// Want:
// oT1 = (BIN.x, TAN.x, NORM.x, view2pos.x)
// oT2 = (BIN.y, TAN.y, NORM.y, view2pos.y)
// ot3 = (BIN.z, TAN.z, NORM.z, view2pos.z)
// with BIN, TAN, and NORM normalized.
// Unnormalized, we have
// BIN = (1, 0, -r7.x) where r7 == accumCos
// TAN = (0, 1, -r7.y)
// NORM= (r7.x, r7.y, 1)
// So, unnormalized, we have
// oT1 = (1, 0, r7.x, view2pos.x)
// oT2 = (0, 1, r7.y, view2pos.y)
// oT3 = (-r7.x, -r7.y, 1, view2pos.z)
// which is just reversing the signs on the accumCos
// terms above. So the normalized version is just
// reversing the signs on the normalized version above.
*/
//mov oT3, r4;
//
// // Transform position to screen
//
//
//m4x3 r6, v0, c21; // HACKAGE
//mov r6.w, c16.z; // HACKAGE
//m4x4 oPos, r6, c0; // ADDFOG
m4x4 r9, r6, c0;
add r10.x, r9.w, c28.x;
mul oFog, r10.x, c28.y;
//mov oFog, c16.y; // TESTFOGHACK
mov oPos, r9;
mov oD0, c4; // SEENORM
// Transform our uvw
dp4 r0.x, v0, c10;
dp4 r0.y, v0, c11;
//mov r0.zw, c16.xxxz;
mov oT0, r0
// Questionble attenuation follows
// Find vector from this point to camera and normalize
sub r0, c17, r6;
dp3 r1.x, r0, r0;
rsq r1.x, r1.x;
mul r0, r0, r1.xxxx;
// Dot that with the computed normal
dp3 r1.x, r0, r11;
mul r1.x, r1.x, v5.z;
// dp3 r1.x, r0, r3; // if you want the adjusted normal, you'll need to normalize/swizzle r3
// Map dot=1 => 0, dot=0 => 1
sub r1.xyzw, c16.zzzz, r1.xxxx;
add r1.w, r1.wwww, c16.zzzz;
mul r1.w, r1.wwww, c16.yyyy;
// No need to clamp, since the destination register (in the pixel shader)
// will saturate [0..1] anyway.
//%%% mul r1.w, r1.w, r4.x;
//%%% mul r1.xyz, r1.xyz, r4.yyy;
mul r1, r1, r4.yyyx; // HACKTESTCOLOR
mul r1.xyz, r1, r8.xxx; // WAVEFACE
mul r1.w, r1.wwww, v5.xxxx;
mul oD1, r1, c20;
// mov oD1, r4.yyyy;
//mov oD1, c16.zzzz; // HACKAGE
// mov oD1, r9;
// mov oD1, r8.xzyw;