309 lines
12 KiB

/*==LICENSE==*
CyanWorlds.com Engine - MMOG client, server and tools
Copyright (C) 2011 Cyan Worlds, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Additional permissions under GNU GPL version 3 section 7
If you modify this Program, or any covered work, by linking or
combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK,
NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent
JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK
(or a modified version of those libraries),
containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA,
PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG
JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the
licensors of this Program grant you additional
permission to convey the resulting work. Corresponding Source for a
non-source form of such a combination shall include the source code for
the parts of OpenSSL and IJG JPEG Library used as well as that of the covered
work.
You can contact Cyan Worlds, Inc. by email legal@cyan.com
or by snail mail at:
Cyan Worlds, Inc.
14617 N Newport Hwy
Mead, WA 99021
*==LICENSE==*/
///////////////////////////////////////////////////////////////////////////////
// //
// plGBufferGroup Class Header //
// Cyan, Inc. //
// //
//// Version History //////////////////////////////////////////////////////////
// //
// 2.21.2001 mcn - Created. //
// //
///////////////////////////////////////////////////////////////////////////////
#ifndef _plGBufferGroup_h
#define _plGBufferGroup_h
#include "hsTemplates.h"
#include "hsGeometry3.h"
#include "hsColorRGBA.h"
//// plGBufferTriangle Struct Definition //////////////////////////////////////
//
// Represents a single triangle inside a plGBufferGroup, which consists of
// three indices (the indices of the three vertices) and a 3-D point
// representing the center of the triangle.
class plGBufferTriangle
{
public:
UInt16 fIndex1, fIndex2, fIndex3, fSpanIndex;
hsPoint3 fCenter;
void Read( hsStream *s );
void Write( hsStream *s );
};
//// plGBufferCell and plGBufferColor Definitions /////////////////////////////
class plGBufferCell
{
public:
UInt32 fVtxStart; // In bytes
UInt32 fColorStart; // In bytes
UInt32 fLength;
plGBufferCell( UInt32 vStart, UInt32 cStart, UInt32 len )
{
fVtxStart = vStart; fColorStart = cStart; fLength = len;
}
plGBufferCell() {}
void Read( hsStream *s );
void Write( hsStream *s );
};
class plGBufferColor
{
public:
UInt32 fDiffuse, fSpecular;
};
//// plGBufferGroup Class Definition //////////////////////////////////////////
//
// Represents a list of vertex and index buffers in a nice package.
class hsStream;
class hsResMgr;
class plPipeline;
class hsGDeviceRef;
class plGeometrySpan;
class plGBufferGroup
{
protected:
UInt8 fFormat;
UInt8 fStride;
UInt8 fLiteStride;
UInt8 fNumSkinWeights;
UInt32 fNumVerts;
UInt32 fNumIndices;
hsBool fVertsVolatile;
hsBool fIdxVolatile;
int fLOD;
hsTArray<hsGDeviceRef *> fVertexBufferRefs;
hsTArray<hsGDeviceRef *> fIndexBufferRefs;
hsTArray<UInt32> fVertBuffSizes;
hsTArray<UInt32> fIdxBuffCounts;
hsTArray<UInt32> fColorBuffCounts;
hsTArray<UInt8 *> fVertBuffStorage;
hsTArray<UInt16 *> fIdxBuffStorage;
hsTArray<UInt32> fVertBuffStarts;
hsTArray<Int32> fVertBuffEnds;
hsTArray<UInt32> fIdxBuffStarts;
hsTArray<Int32> fIdxBuffEnds;
hsTArray<plGBufferColor *> fColorBuffStorage;
hsTArray<hsTArray<plGBufferCell> *> fCells;
virtual void ISendStorageToBuffers( plPipeline *pipe, hsBool adjustForNvidiaLighting );
UInt8 ICalcVertexSize( UInt8 &liteStride );
UInt8* IVertBuffStorage(int iBuff, int iVtx) const { return fVertBuffStorage[iBuff] + iVtx*fStride; }
UInt32 IMakeCell( UInt32 vbIndex, UInt8 flags, UInt32 vStart, UInt32 cStart, UInt32 len, UInt32 *offset );
void IGetStartVtxPointer( UInt32 vbIndex, UInt32 cell, UInt32 offset, UInt8 *&tempPtr, plGBufferColor *&cPtr );
public:
static const UInt32 kMaxNumVertsPerBuffer;
static const UInt32 kMaxNumIndicesPerBuffer;
enum Formats
{
kUVCountMask = 0x0f, // Problem is, we need enough bits to store the max #, which means
// we really want ( max # << 1 ) - 1
kSkinNoWeights = 0x00, // 0000000
kSkin1Weight = 0x10, // 0010000
kSkin2Weights = 0x20, // 0100000
kSkin3Weights = 0x30, // 0110000
kSkinWeightMask = 0x30, // 0110000
kSkinIndices = 0x40, // 1000000
kEncoded = 0x80
};
enum
{
kReserveInterleaved = 0x01,
kReserveVerts = 0x02,
kReserveColors = 0x04,
kReserveSeparated = 0x08,
kReserveIsolate = 0x10
};
plGBufferGroup(UInt8 format, hsBool vertsVolatile, hsBool idxVolatile, int LOD = 0);
~plGBufferGroup();
UInt8 GetNumUVs( void ) const { return ( fFormat & kUVCountMask ); }
UInt8 GetNumWeights() const { return (fFormat & kSkinWeightMask) >> 4; }
static UInt8 CalcNumUVs( UInt8 format ) { return ( format & kUVCountMask ); }
static UInt8 UVCountToFormat( UInt8 numUVs ) { return numUVs & kUVCountMask; }
void DirtyVertexBuffer(int i);
void DirtyIndexBuffer(int i);
hsBool VertexReady(int i) const { return (i < fVertexBufferRefs.GetCount()) && fVertexBufferRefs[i]; }
hsBool IndexReady(int i) const { return (i < fIndexBufferRefs.GetCount()) && fIndexBufferRefs[i]; }
UInt8 GetVertexSize( void ) const { return fStride; }
UInt8 GetVertexLiteStride( void ) const { return fLiteStride; }
UInt8 GetVertexFormat( void ) const { return fFormat; }
UInt32 GetMemUsage( void ) const { return ( fNumVerts * GetVertexSize() ) + ( fNumIndices * sizeof( UInt16 ) ); }
UInt32 GetNumVerts( void ) const { return fNumVerts; }
UInt32 GetNumIndices( void ) const { return fNumIndices; }
UInt32 GetNumPrimaryVertsLeft( void ) const;
UInt32 GetNumVertsLeft( UInt32 idx ) const;
UInt32 GetVertBufferSize(UInt32 idx) const { return fVertBuffSizes[idx]; }
UInt32 GetVertBufferCount(UInt32 idx) const;
UInt32 GetIndexBufferCount(UInt32 idx) const { return fIdxBuffCounts[idx]; }
UInt32 GetVertStartFromCell(UInt32 idx, UInt32 cell, UInt32 offset) const;
// These should only be called by the pipeline, because only it knows when it's safe.
// If the data is volatile, these are no-ops
void PurgeVertBuffer(UInt32 idx);
void PurgeIndexBuffer(UInt32 idx);
///////////////////////////////////////////////////////////////////////////////
// The following group of functions is an advanced optimization, and a pretty
// specialized one at that. It just limits the amount of data that will get
// uploaded to video. If you don't know you are limited by bandwidth to the
// board, or you just don't know what your are doing, don't mess with them.
// If you never touch them, everything will work. If you set them correcly,
// things may work faster. If you set them incorrectly, be sure to save
// all files before running.
// All of these are indices, not bytes. from the beginning of the buffer.
UInt32 GetVertBufferStart(UInt32 idx) const { return fVertBuffStarts[idx]; }
UInt32 GetVertBufferEnd(UInt32 idx) const { return fVertBuffEnds[idx] >= 0 ? UInt32(fVertBuffEnds[idx]) : GetVertBufferCount(idx); }
UInt32 GetIndexBufferStart(UInt32 idx) const { return fIdxBuffStarts[idx]; }
UInt32 GetIndexBufferEnd(UInt32 idx) const { return fIdxBuffEnds[idx] >= 0 ? UInt32(fIdxBuffEnds[idx]) : GetIndexBufferCount(idx); }
void SetVertBufferStart(UInt32 idx, UInt32 s) { fVertBuffStarts[idx] = s; }
void SetVertBufferEnd(UInt32 idx, UInt32 e) { fVertBuffEnds[idx] = e; }
void SetIndexBufferStart(UInt32 idx, UInt32 s) { fIdxBuffStarts[idx] = s; }
void SetIndexBufferEnd(UInt32 idx, UInt32 e) { fIdxBuffEnds[idx] = e; }
///////////////////////////////////////////////////////////////////////////////
UInt32 GetNumVertexBuffers( void ) const { return fVertBuffStorage.GetCount(); }
UInt32 GetNumIndexBuffers( void ) const { return fIdxBuffStorage.GetCount(); }
UInt8 *GetVertBufferData( UInt32 idx ) { return fVertBuffStorage[ idx ]; }
UInt16 *GetIndexBufferData( UInt32 idx ) { return fIdxBuffStorage[ idx ]; }
plGBufferColor *GetColorBufferData( UInt32 idx ) { return fColorBuffStorage[ idx ]; }
hsGDeviceRef *GetVertexBufferRef( UInt32 i );
hsGDeviceRef *GetIndexBufferRef( UInt32 i );
UInt32 GetNumCells( UInt32 idx ) const { return fCells[ idx ]->GetCount(); }
plGBufferCell *GetCell( UInt32 idx, UInt32 cell ) { return &( (*fCells[ idx ])[ cell ] ); }
void SetVertexBufferRef( UInt32 index, hsGDeviceRef *vb );
void SetIndexBufferRef( UInt32 index, hsGDeviceRef *ib );
virtual void Read( hsStream* s );
virtual void Write( hsStream* s );
// Accessor functions
hsPoint3 &Position( int iBuff, UInt32 cell, int iVtx );
hsVector3 &Normal( int iBuff, UInt32 cell, int iVtx );
UInt32 &Color( int iBuff, UInt32 cell, int iVtx );
UInt32 &Specular( int iBuff, UInt32 cell, int iVtx );
hsPoint3 &UV( int iBuff, UInt32 cell, int iVtx, int channel );
UInt32 Format() const { return fFormat; }
// Take temp accumulators and actually build buffer data from them
void TidyUp( void );
// Delete the buffer data storage
void CleanUp( void );
// Take buffer data and convert it to device-specific buffers
void PrepForRendering( plPipeline *pipe, hsBool adjustForNvidiaLighting );
// Reserves space in a vertex buffer
hsBool ReserveVertStorage( UInt32 numVerts, UInt32 *vbIndex, UInt32 *cell, UInt32 *offset, UInt8 flags );
// Append vertex data to the first available storage buffer
void AppendToVertStorage( plGeometrySpan *srcSpan, UInt32 *vbIndex, UInt32 *cell, UInt32 *offset );
void AppendToVertAndColorStorage( plGeometrySpan *srcSpan, UInt32 *vbIndex, UInt32 *cell, UInt32 *offset );
void AppendToColorStorage( plGeometrySpan *srcSpan, UInt32 *vbIndex, UInt32 *cell, UInt32 *offset, UInt32 origCell );
// Reserves space in an index buffer
hsBool ReserveIndexStorage( UInt32 numIndices, UInt32 *ibIndex, UInt32 *ibStart, UInt16 **dataPtr = nil );
// Append index data to the first available storage buffer
void AppendToIndexStorage( UInt32 numIndices, UInt16 *data, UInt32 addToAll, UInt32 *ibIndex, UInt32 *ibStart );
/// Dynamic functions (addition/deletion of raw data)
void DeleteVertsFromStorage( UInt32 which, UInt32 start, UInt32 length );
void AdjustIndicesInStorage( UInt32 which, UInt16 threshhold, Int16 delta );
void DeleteIndicesFromStorage( UInt32 which, UInt32 start, UInt32 length );
// Returns an array of plGBufferTriangles representing the span of indices specified
plGBufferTriangle *ConvertToTriList( Int16 spanIndex, UInt32 whichIdx, UInt32 whichVtx, UInt32 whichCell, UInt32 start, UInt32 numTriangles );
// Stuffs the indices from an array of plGBufferTriangles into the index storage
void StuffFromTriList( UInt32 which, UInt32 start, UInt32 numTriangles, UInt16 *data );
void StuffTri( UInt32 iBuff, UInt32 iTri, UInt16 idx0, UInt16 idx1, UInt16 idx2 );
// Stuff the data from a geometry span into vertex storage
void StuffToVertStorage( plGeometrySpan *srcSpan, UInt32 vbIndex, UInt32 cell, UInt32 offset, UInt8 flags );
// Are our verts volatile?
hsBool AreVertsVolatile() const { return fVertsVolatile; }
hsBool AreIdxVolatile() const { return fIdxVolatile; }
int GetLOD() const { return fLOD; }
};
#endif // _plGBufferGroup_h