You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1174 lines
37 KiB

/*==LICENSE==*
CyanWorlds.com Engine - MMOG client, server and tools
Copyright (C) 2011 Cyan Worlds, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Additional permissions under GNU GPL version 3 section 7
If you modify this Program, or any covered work, by linking or
combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK,
NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent
JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK
(or a modified version of those libraries),
containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA,
PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG
JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the
licensors of this Program grant you additional
permission to convey the resulting work. Corresponding Source for a
non-source form of such a combination shall include the source code for
the parts of OpenSSL and IJG JPEG Library used as well as that of the covered
work.
You can contact Cyan Worlds, Inc. by email legal@cyan.com
or by snail mail at:
Cyan Worlds, Inc.
14617 N Newport Hwy
Mead, WA 99021
*==LICENSE==*/
/*****************************************************************************
*
* $/Plasma20/Sources/Plasma/NucleusLib/pnNetCli/pnNcCli.cpp
*
***/
#include "Pch.h"
#pragma hdrstop
//#define NCCLI_DEBUGGING
#ifdef NCCLI_DEBUGGING
# pragma message("Compiling pnNetCli with debugging on")
# define NCCLI_LOG LogMsg
#else
# define NCCLI_LOG NULL_STMT
#endif
#ifndef PLASMA_EXTERNAL_RELEASE
struct NetLogMessage_Header
{
unsigned m_protocol;
int m_direction;
unsigned m_time;
unsigned m_size;
};
#define HURU_PIPE_NAME "\\\\.\\pipe\\H-Uru_NetLog"
static CRITICAL_SECTION s_pipeCritical;
static HANDLE s_netlog = 0;
static ULARGE_INTEGER s_timeOffset;
static unsigned GetAdjustedTimer()
{
FILETIME time;
ULARGE_INTEGER maths;
GetSystemTimeAsFileTime(&time);
maths.HighPart = time.dwHighDateTime;
maths.LowPart = time.dwLowDateTime;
maths.QuadPart -= s_timeOffset.QuadPart;
return maths.LowPart % 864000000;
}
#endif // PLASMA_EXTERNAL_RELEASE
namespace pnNetCli {
/*****************************************************************************
*
* Private types and constants
*
***/
enum ENetCliMode {
kNetCliModeServerStart,
kNetCliModeClientStart,
kNetCliModeEncrypted,
kNumNetCliModes
};
} using namespace pnNetCli;
/*****************************************************************************
*
* Opaque types
*
***/
// connection structure attached to each socket
struct NetCli : THashKeyVal<Uuid> {
// communication channel
AsyncSocket sock;
ENetProtocol protocol;
NetMsgChannel * channel;
bool server;
// message queue
LINK(NetCli) link;
NetCliQueue * queue;
// message send/recv
const NetMsgInitRecv * recvMsg;
const NetMsgField * recvField;
unsigned recvFieldBytes;
bool recvDispatch;
uint8_t * sendCurr; // points into sendBuffer
CInputAccumulator input;
// Message encryption
ENetCliMode mode;
FNetCliEncrypt encryptFcn;
uint8_t seed[kNetMaxSymmetricSeedBytes];
CryptKey * cryptIn; // nil if encrytpion is disabled
CryptKey * cryptOut; // nil if encrytpion is disabled
void * encryptParam;
// Message buffers
uint8_t sendBuffer[kAsyncSocketBufferSize];
ARRAY(uint8_t) recvBuffer;
};
struct NetCliQueue {
LISTDECL(NetCli, link) list;
unsigned lastSendMs;
unsigned flushTimeMs;
};
namespace pnNetCli {
/*****************************************************************************
*
* Private data
*
***/
/*****************************************************************************
*
* Internal functions
*
***/
//============================================================================
static void PutBufferOnWire (NetCli * cli, void * data, unsigned bytes) {
uint8_t * temp, * heap = NULL;
#ifndef PLASMA_EXTERNAL_RELEASE
// Write to the netlog
if (s_netlog) {
NetLogMessage_Header header;
header.m_protocol = cli->protocol;
header.m_direction = 0; // kCli2Srv
header.m_time = GetAdjustedTimer();
header.m_size = bytes;
EnterCriticalSection(&s_pipeCritical);
DWORD bytesWritten;
WriteFile(s_netlog, &header, sizeof(header), &bytesWritten, NULL);
WriteFile(s_netlog, data, bytes, &bytesWritten, NULL);
LeaveCriticalSection(&s_pipeCritical);
}
#endif // PLASMA_EXTERNAL_RELEASE
if (cli->mode == kNetCliModeEncrypted && cli->cryptOut) {
// Encrypt data...
if (bytes <= 2048)
// uint8_t count is small, use stack-based buffer
temp = ALLOCA(uint8_t, bytes);
else
// uint8_t count is large, use heap-based buffer
temp = heap = (uint8_t *)ALLOC(bytes);
MemCopy(temp, data, bytes);
CryptEncrypt(cli->cryptOut, bytes, temp);
data = temp;
}
if (cli->sock)
AsyncSocketSend(cli->sock, data, bytes);
// free heap buffer (if any)
FREE(heap);
}
//============================================================================
static void FlushSendBuffer (NetCli * cli) {
const unsigned bytes = cli->sendCurr - cli->sendBuffer;
ASSERT(bytes <= arrsize(cli->sendBuffer));
PutBufferOnWire(cli, cli->sendBuffer, bytes);
cli->sendCurr = cli->sendBuffer;
}
//===========================================================================
static void AddToSendBuffer (
NetCli * cli,
unsigned bytes,
void const * const data
) {
uint8_t const * src = (uint8_t const *) data;
if (bytes > arrsize(cli->sendBuffer)) {
// Let the OS fragment oversize buffers
FlushSendBuffer(cli);
void * heap = ALLOC(bytes);
MemCopy(heap, data, bytes);
PutBufferOnWire(cli, heap, bytes);
FREE(heap);
}
else {
for (;;) {
// calculate the space left in the output buffer and use it
// to determine the maximum number of bytes that will fit
unsigned const left = &cli->sendBuffer[arrsize(cli->sendBuffer)] - cli->sendCurr;
unsigned const copy = min(bytes, left);
// copy the data into the buffer
for (unsigned i = 0; i < copy; ++i)
cli->sendCurr[i] = src[i];
cli->sendCurr += copy;
ASSERT(cli->sendCurr - cli->sendBuffer <= sizeof(cli->sendBuffer));
// if we copied all the data then bail
if (copy < left)
break;
src += copy;
bytes -= copy;
FlushSendBuffer(cli);
}
}
}
//============================================================================
static void BufferedSendData (
NetCli * cli,
const uintptr_t msg[],
unsigned fieldCount
) {
#define ASSERT_MSG_VALID(expr) \
ASSERTMSG(expr, "Invalid message definition");
ASSERT(cli);
ASSERT(msg);
ASSERT(fieldCount);
if (!cli->sock)
return;
uintptr_t const * const msgEnd = msg + fieldCount;
const NetMsgInitSend * sendMsg = NetMsgChannelFindSendMessage(cli->channel, msg[0]);
ASSERT(msg[0] == sendMsg->msg.messageId);
ASSERT(fieldCount-1 == sendMsg->msg.count);
// insert messageId into command stream
const uint16_t msgId = hsToLE16((uint16_t)msg[0]);
AddToSendBuffer(cli, sizeof(uint16_t), (const void*)&msgId);
++msg;
ASSERT_MSG_VALID(msg < msgEnd);
// insert fields into command stream
uint32_t varCount = 0;
uint32_t varSize = 0;
const NetMsgField * cmd = sendMsg->msg.fields;
const NetMsgField * cmdEnd = cmd + sendMsg->msg.count;
for (; cmd < cmdEnd; ++msg, ++cmd) {
switch (cmd->type) {
case kNetMsgFieldInteger: {
const unsigned count = cmd->count ? cmd->count : 1;
const unsigned bytes = cmd->size * count;
void * temp = ALLOCA(uint8_t, bytes);
if (count == 1)
{
// Single values are passed by value
if (cmd->size == sizeof(uint8_t)) {
*(uint8_t*)temp = *(uint8_t*)msg;
} else if (cmd->size == sizeof(uint16_t)) {
*(uint16_t*)temp = hsToLE16(*(uint16_t*)msg);
} else if (cmd->size == sizeof(uint32_t)) {
*(uint32_t*)temp = hsToLE32(*(uint32_t*)msg);
} else if (cmd->size == sizeof(uint64_t)) {
*(uint64_t*)temp = hsToLE64(*(uint64_t*)msg);
}
}
else
{
// Value arrays are passed in by ptr
for (int i = 0; i < count; i++) {
if (cmd->size == sizeof(uint8_t)) {
((uint8_t*)temp)[i] = ((uint8_t*)*msg)[i];
} else if (cmd->size == sizeof(uint16_t)) {
((uint16_t*)temp)[i] = hsToLE16(((uint16_t*)*msg)[i]);
} else if (cmd->size == sizeof(uint32_t)) {
((uint32_t*)temp)[i] = hsToLE32(((uint32_t*)*msg)[i]);
} else if (cmd->size == sizeof(uint64_t)) {
((uint64_t*)temp)[i] = hsToLE64(((uint64_t*)*msg)[i]);
}
}
}
// Write values to send buffer
AddToSendBuffer(cli, bytes, temp);
}
break;
case kNetMsgFieldReal: {
const unsigned count = cmd->count ? cmd->count : 1;
const unsigned bytes = cmd->size * count;
if (count == 1)
// Single values are passed in by value
AddToSendBuffer(cli, bytes, (const void *) msg);
else
// Value arrays are passed in by ptr
AddToSendBuffer(cli, bytes, (const void *) *msg);
}
break;
case kNetMsgFieldString: {
// Use less-than instead of less-or-equal because
// we reserve one space for the NULL terminator
const uint16_t length = (uint16_t) StrLen((const wchar_t *) *msg);
ASSERT_MSG_VALID(length < cmd->count);
// Write actual string length
uint16_t size = hsToLE16(length);
AddToSendBuffer(cli, sizeof(uint16_t), (const void*)&size);
// Write string data
AddToSendBuffer(cli, length * sizeof(wchar_t), (const void *) *msg);
}
break;
case kNetMsgFieldData:
case kNetMsgFieldRawData: {
// write values to send buffer
AddToSendBuffer(cli, cmd->count * cmd->size, (const void *) *msg);
}
break;
case kNetMsgFieldVarCount: {
ASSERT(!varCount);
ASSERT(!varSize);
// remember the element size
varSize = cmd->size;
// write the actual element count
varCount = hsToLE32((uint32_t)*msg);
AddToSendBuffer(cli, sizeof(uint32_t), (const void*)&varCount);
}
break;
case kNetMsgFieldVarPtr:
case kNetMsgFieldRawVarPtr: {
ASSERT(varSize);
// write var sized array
AddToSendBuffer(cli, varCount * varSize, (const void *) *msg);
varCount = 0;
varSize = 0;
}
break;
case kNetMsgFieldPtr:
case kNetMsgFieldRawPtr: {
// write values
AddToSendBuffer(cli, cmd->count * cmd->size, (const void *) *msg);
}
break;
DEFAULT_FATAL(cmd->type);
}
}
// prepare to flush this connection
if (cli->queue)
cli->queue->list.Link(cli);
}
//===========================================================================
static bool DispatchData (NetCli * cli, void * param) {
uint16_t msgId = 0;
while (!cli->input.Eof()) {
// if we're not already decompressing a message, start new message
if (!cli->recvMsg) {
// get next message id
if (!cli->input.Get(sizeof(msgId), &msgId))
goto NEED_MORE_DATA;
msgId = hsToLE16(msgId);
if (nil == (cli->recvMsg = NetMsgChannelFindRecvMessage(cli->channel, msgId)))
goto ERR_NO_HANDLER;
// prepare to start decompressing new fields
ASSERT(!cli->recvField);
ASSERT(!cli->recvFieldBytes);
cli->recvField = cli->recvMsg->msg.fields;
cli->recvBuffer.ZeroCount();
cli->recvBuffer.Reserve(kAsyncSocketBufferSize);
// store the message id as uint32_t into the destination buffer
uint32_t * recvMsgId = (uint32_t *) cli->recvBuffer.New(sizeof(uint32_t));
*recvMsgId = msgId;
}
for (
const NetMsgField * end = cli->recvMsg->msg.fields + cli->recvMsg->msg.count;
cli->recvField < end;
++cli->recvField
) {
switch (cli->recvField->type) {
case kNetMsgFieldInteger: {
const unsigned count
= cli->recvField->count
? cli->recvField->count
: 1;
// Get integer values
const unsigned bytes = count * cli->recvField->size;
uint8_t * data = cli->recvBuffer.New(bytes);
if (!cli->input.Get(bytes, data)) {
cli->recvBuffer.ShrinkBy(bytes);
goto NEED_MORE_DATA;
}
// byte-swap integers
// This is so screwed up >.<
for (int i = 0; i < count; i++) {
if (cli->recvField->size == sizeof(uint16_t)) {
((uint16_t*)data)[i] = hsToLE16(((uint16_t*)data)[i]);
} else if (cli->recvField->size == sizeof(uint32_t)) {
((uint32_t*)data)[i] = hsToLE32(((uint32_t*)data)[i]);
} else if (cli->recvField->size == sizeof(uint64_t)) {
((uint64_t*)data)[i] = hsToLE64(((uint64_t*)data)[i]);
}
}
// Field complete
}
break;
case kNetMsgFieldReal: {
const unsigned count
= cli->recvField->count
? cli->recvField->count
: 1;
// Get float values
const unsigned bytes = count * cli->recvField->size;
uint8_t * data = cli->recvBuffer.New(bytes);
if (!cli->input.Get(bytes, data)) {
cli->recvBuffer.ShrinkBy(bytes);
goto NEED_MORE_DATA;
}
// Field complete
}
break;
case kNetMsgFieldData:
case kNetMsgFieldRawData: {
// Read fixed-length data into destination buffer
const unsigned bytes = cli->recvField->count * cli->recvField->size;
uint8_t * data = cli->recvBuffer.New(bytes);
if (!cli->input.Get(bytes, data)) {
cli->recvBuffer.ShrinkBy(bytes);
goto NEED_MORE_DATA;
}
// Field complete
}
break;
case kNetMsgFieldVarCount: {
// Read var count field into destination buffer
const unsigned bytes = sizeof(uint32_t);
uint8_t * data = cli->recvBuffer.New(bytes);
if (!cli->input.Get(bytes, data)) {
cli->recvBuffer.ShrinkBy(bytes);
goto NEED_MORE_DATA;
}
// byte-swap value
uint32_t val = hsToLE32(*(uint32_t*)data);
// Prepare to read var-length field
cli->recvFieldBytes = val * cli->recvField->size;
// Field complete
}
break;
case kNetMsgFieldVarPtr:
case kNetMsgFieldRawVarPtr: {
// Read var-length data into destination buffer
const unsigned bytes = cli->recvFieldBytes;
uint8_t * data = cli->recvBuffer.New(bytes);
if (!cli->input.Get(bytes, data)) {
cli->recvBuffer.ShrinkBy(bytes);
goto NEED_MORE_DATA;
}
// Field complete
cli->recvFieldBytes = 0;
}
break;
case kNetMsgFieldString: {
if (!cli->recvFieldBytes) {
// Read string length
uint16_t length;
if (!cli->input.Get(sizeof(uint16_t), &length))
goto NEED_MORE_DATA;
cli->recvFieldBytes = hsToLE16(length) * sizeof(wchar_t);
// Validate size. Use >= instead of > to leave room for the NULL terminator.
if (cli->recvFieldBytes >= cli->recvField->count * cli->recvField->size)
goto ERR_BAD_COUNT;
}
const unsigned bytes = cli->recvField->count * cli->recvField->size;
uint8_t * data = cli->recvBuffer.New(bytes);
// Read compressed string data (less than full field length)
if (!cli->input.Get(cli->recvFieldBytes, data)) {
cli->recvBuffer.ShrinkBy(bytes);
goto NEED_MORE_DATA;
}
// Insert NULL terminator
* (wchar_t *)(data + cli->recvFieldBytes) = 0;
// IDEA: fill the remainder with a freaky uint8_t pattern
// Field complete
cli->recvFieldBytes = 0;
}
break;
}
}
// dispatch message to handler function
NCCLI_LOG(kLogPerf, L"pnNetCli: Dispatching. msg: %S. cli: %p", cli->recvMsg ? cli->recvMsg->msg.name : "(unknown)", cli);
if (!cli->recvMsg->recv(cli->recvBuffer.Ptr(), cli->recvBuffer.Count(), param))
goto ERR_DISPATCH_FAILED;
// prepare to start next message
cli->recvMsg = nil;
cli->recvField = 0;
cli->recvFieldBytes = 0;
// Release oversize message buffer
if (cli->recvBuffer.Count() > kAsyncSocketBufferSize)
cli->recvBuffer.Clear();
}
return true;
// these are used for convenience in setting breakpoints
NEED_MORE_DATA:
NCCLI_LOG(kLogPerf, L"pnNetCli: NEED_MORE_DATA. msg: %S (%u). cli: %p", cli->recvMsg ? cli->recvMsg->msg.name : "(unknown)", msgId, cli);
return true;
ERR_BAD_COUNT:
LogMsg(kLogError, L"pnNetCli: ERR_BAD_COUNT. msg: %S (%u). cli: %p", cli->recvMsg ? cli->recvMsg->msg.name : "(unknown)", msgId, cli);
return false;
ERR_NO_HANDLER:
LogMsg(kLogError, L"pnNetCli: ERR_NO_HANDLER. msg: %S (%u). cli: %p", cli->recvMsg ? cli->recvMsg->msg.name : "(unknown)", msgId, cli);
return false;
ERR_DISPATCH_FAILED:
LogMsg(kLogError, L"pnNetCli: ERR_DISPATCH_FAILED. msg: %S (%u). cli: %p", cli->recvMsg ? cli->recvMsg->msg.name : "(unknown)", msgId, cli);
return false;
}
namespace Connect {
/*****************************************************************************
*
* NetCli connect protocol
*
***/
#include <PshPack1.h>
enum {
kNetCliCli2SrvConnect,
kNetCliSrv2CliEncrypt,
kNetCliSrv2CliError,
kNumNetCliMsgs
};
struct NetCli_PacketHeader {
uint8_t message;
uint8_t length;
};
struct NetCli_Cli2Srv_Connect : NetCli_PacketHeader {
uint8_t dh_y_data[kNetDiffieHellmanKeyBits / 8];
};
struct NetCli_Srv2Cli_Encrypt : NetCli_PacketHeader {
uint8_t serverSeed[kNetMaxSymmetricSeedBytes];
};
struct NetCli_Srv2Cli_Error : NetCli_PacketHeader {
uint32_t error; // ENetError
};
#include <PopPack.h>
//===========================================================================
static void CreateSymmetricKey (
unsigned serverBytes,
const uint8_t * serverSeed,
unsigned clientBytes,
const uint8_t * clientSeed,
unsigned outputBytes,
uint8_t * outputSeed
) {
ASSERT(clientBytes == kNetMaxSymmetricSeedBytes);
ASSERT(serverBytes == kNetMaxSymmetricSeedBytes);
ASSERT(outputBytes == kNetMaxSymmetricSeedBytes);
for (unsigned i = 0; i < outputBytes; ++i)
outputSeed[i] = (uint8_t) (clientSeed[i] ^ serverSeed[i]);
}
//============================================================================
static void ClientConnect (NetCli * cli) {
// Initiate diffie-hellman for client
BigNum clientSeed;
BigNum serverSeed;
NetMsgCryptClientStart(
cli->channel,
sizeof(cli->seed),
cli->seed,
&clientSeed,
&serverSeed
);
// Save client seed
{
ZERO(cli->seed);
unsigned bytes;
unsigned char * data = clientSeed.GetData_LE(&bytes);
MemCopy(cli->seed, data, min(bytes, sizeof(cli->seed)));
delete [] data;
}
// Send server seed
if (cli->sock) {
unsigned bytes;
NetCli_Cli2Srv_Connect msg;
unsigned char * data = serverSeed.GetData_LE(&bytes); // will be 0 if encryption is disabled, and thereby send an empty seed
ASSERTMSG(bytes <= sizeof(msg.dh_y_data), "4");
msg.message = kNetCliCli2SrvConnect;
msg.length = (uint8_t) (sizeof(msg) - sizeof(msg.dh_y_data) + bytes);
MemCopy(msg.dh_y_data, data, bytes);
AsyncSocketSend(cli->sock, &msg, msg.length);
delete [] data;
}
}
//============================================================================
static bool ServerRecvConnect (
NetCli * cli,
const NetCli_PacketHeader & pkt
) {
// Validate connection state
if (cli->mode != kNetCliModeServerStart)
return false;
// Validate message size
const NetCli_Cli2Srv_Connect & msg =
* (const NetCli_Cli2Srv_Connect *) &pkt;
if (pkt.length < sizeof(msg))
return false;
int seedLength = msg.length - sizeof(pkt);
// Send the server seed to the client (unencrypted)
if (cli->sock) {
NetCli_Srv2Cli_Encrypt reply;
reply.message = kNetCliSrv2CliEncrypt;
reply.length = seedLength == 0 ? 0 : sizeof(reply); // reply with empty seed if we got empty seed (this means: no encryption)
MemCopy(reply.serverSeed, cli->seed, sizeof(reply.serverSeed));
AsyncSocketSend(cli->sock, &reply, reply.length);
}
if (seedLength == 0) { // client wishes no encryption (that's okay, nobody else can "fake" us as nobody has the private key, so if the client actually wants encryption it will only work with the correct peer)
cli->cryptIn = nil;
cli->cryptOut = nil;
}
else {
// Compute client seed
uint8_t clientSeed[kNetMaxSymmetricSeedBytes];
BigNum clientSeedValue;
{
NetMsgCryptServerConnect(
cli->channel,
seedLength,
msg.dh_y_data,
&clientSeedValue
);
ZERO(clientSeed);
unsigned bytes;
unsigned char * data = clientSeedValue.GetData_LE(&bytes);
MemCopy(clientSeed, data, min(bytes, sizeof(clientSeed)));
delete [] data;
}
// Create the symmetric key from a combination
// of the client seed and the server seed
uint8_t sharedSeed[kNetMaxSymmetricSeedBytes];
CreateSymmetricKey(
sizeof(cli->seed), cli->seed, // server seed
sizeof(clientSeed), clientSeed, // client seed
sizeof(sharedSeed), sharedSeed // combined seed
);
// Switch to encrypted mode
cli->cryptIn = CryptKeyCreate(kCryptRc4, sizeof(sharedSeed), sharedSeed);
cli->cryptOut = CryptKeyCreate(kCryptRc4, sizeof(sharedSeed), sharedSeed);
}
cli->mode = kNetCliModeEncrypted; // should rather be called "established", but whatever
return cli->encryptFcn(kNetSuccess, cli->encryptParam);
}
//============================================================================
static bool ClientRecvEncrypt (
NetCli * cli,
const NetCli_PacketHeader & pkt
) {
// Validate connection state
if (cli->mode != kNetCliModeClientStart)
return false;
// find out if we want encryption
const BigNum * DH_N;
NetMsgChannelGetDhConstants(cli->channel, nil, nil, &DH_N);
bool encrypt = !DH_N->isZero();
// Process message
const NetCli_Srv2Cli_Encrypt & msg =
* (const NetCli_Srv2Cli_Encrypt *) &pkt;
if (encrypt) { // we insist on encryption, don't let some MitM decide for us!
if (pkt.length != sizeof(msg))
return false;
// Create the symmetric key from a combination
// of the client seed and the server seed
uint8_t sharedSeed[kNetMaxSymmetricSeedBytes];
CreateSymmetricKey(
sizeof(msg.serverSeed), msg.serverSeed, // server seed
sizeof(cli->seed), cli->seed, // client seed
sizeof(sharedSeed), sharedSeed // combined seed
);
// Switch to encrypted mode
cli->cryptIn = CryptKeyCreate(kCryptRc4, sizeof(sharedSeed), sharedSeed);
cli->cryptOut = CryptKeyCreate(kCryptRc4, sizeof(sharedSeed), sharedSeed);
}
else { // honestly we do not care what the other side sends, we will send plaintext
if (pkt.length != sizeof(pkt))
return false;
cli->cryptIn = nil;
cli->cryptOut = nil;
}
cli->mode = kNetCliModeEncrypted; // should rather be called "established", but whatever
return cli->encryptFcn(kNetSuccess, cli->encryptParam);
}
//============================================================================
static bool ClientRecvError (
NetCli * cli,
const NetCli_PacketHeader & pkt
) {
// Validate connection state
if (cli->mode != kNetCliModeClientStart)
return false;
// Validate message size
const NetCli_Srv2Cli_Error & msg =
* (const NetCli_Srv2Cli_Error *) &pkt;
if (pkt.length < sizeof(msg))
return false;
cli->encryptFcn((ENetError) msg.error, cli->encryptParam);
return false;
}
//============================================================================
typedef bool (* FNetCliPacket)(
NetCli * cli,
const NetCli_PacketHeader & pkt
);
#if 0
#ifdef SERVER
static const FNetCliPacket s_recvTbl[kNumNetCliMsgs] = {
ServerRecvConnect,
nil,
nil,
};
#endif
#ifdef CLIENT
static const FNetCliPacket s_recvTbl[kNumNetCliMsgs] = {
nil,
ClientRecvEncrypt,
ClientRecvError,
};
#endif
#else // 0
static const FNetCliPacket s_recvTbl[kNumNetCliMsgs] = {
ServerRecvConnect,
ClientRecvEncrypt,
ClientRecvError,
};
#endif // 0
//===========================================================================
static unsigned DispatchPacket (
NetCli * cli,
unsigned bytes,
const uint8_t data[]
) {
for (;;) {
const NetCli_PacketHeader & pkt = * (const NetCli_PacketHeader *) data;
if (bytes < sizeof(pkt))
break;
if (pkt.length > bytes)
break;
if (pkt.message >= kNumNetCliMsgs)
break;
if (!s_recvTbl[pkt.message])
break;
if (!s_recvTbl[pkt.message](cli, pkt))
break;
// Success!
return pkt.length;
}
// Failure!
return 0;
}
} // namespace Connect
/*****************************************************************************
*
* NetCli implementation
*
***/
//===========================================================================
static void ResetSendRecv (NetCli * cli) {
cli->recvMsg = nil;
cli->recvField = nil;
cli->recvFieldBytes = 0;
cli->recvDispatch = true;
cli->sendCurr = cli->sendBuffer;
cli->recvBuffer.Clear();
cli->input.Clear();
}
//===========================================================================
static NetCli * ConnCreate (
AsyncSocket sock,
unsigned protocol,
ENetCliMode mode
) {
// find channel
unsigned largestRecv;
NetMsgChannel * channel = NetMsgChannelLock(
protocol,
mode == kNetCliModeServerStart,
&largestRecv
);
if (!channel)
return nil;
NetCli * const cli = NEWZERO(NetCli);
cli->sock = sock;
cli->protocol = (ENetProtocol) protocol;
cli->channel = channel;
cli->mode = mode;
cli->SetValue(kNilGuid);
#ifndef PLASMA_EXTERNAL_RELEASE
// Network debug pipe
if (!s_netlog) {
InitializeCriticalSection(&s_pipeCritical);
WaitNamedPipe(HURU_PIPE_NAME, NMPWAIT_WAIT_FOREVER);
s_netlog = CreateFileA(
HURU_PIPE_NAME,
GENERIC_READ | GENERIC_WRITE,
0,
NULL,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL,
NULL
);
// Not exactly the start, but close enough ;)
FILETIME timeBase;
GetSystemTimeAsFileTime(&timeBase);
s_timeOffset.HighPart = timeBase.dwHighDateTime;
s_timeOffset.LowPart = timeBase.dwLowDateTime;
}
#endif // PLASMA_EXTERNAL_RELEASE
ResetSendRecv(cli);
return cli;
}
//===========================================================================
static void SetConnSeed (
NetCli * cli,
unsigned seedBytes,
const uint8_t seedData[]
) {
if (seedBytes)
MemCopy(cli->seed, seedData, min(sizeof(cli->seed), seedBytes));
else
CryptCreateRandomSeed(sizeof(cli->seed), cli->seed);
}
} using namespace pnNetCli;
/*****************************************************************************
*
* Exports
*
***/
//============================================================================
NetCli * NetCliConnectAccept (
AsyncSocket sock,
unsigned protocol,
bool unbuffered,
FNetCliEncrypt encryptFcn,
unsigned seedBytes,
const uint8_t seedData[],
void * encryptParam
) {
// Create connection
NetCli * cli = ConnCreate(sock, protocol, kNetCliModeClientStart);
if (cli) {
AsyncSocketEnableNagling(sock, !unbuffered);
cli->encryptFcn = encryptFcn;
cli->encryptParam = encryptParam;
SetConnSeed(cli, seedBytes, seedData);
Connect::ClientConnect(cli);
}
return cli;
}
//============================================================================
#ifdef SERVER
NetCli * NetCliListenAccept (
AsyncSocket sock,
unsigned protocol,
bool unbuffered,
FNetCliEncrypt encryptFcn,
unsigned seedBytes,
const uint8_t seedData[],
void * encryptParam
) {
// Create connection
NetCli * cli = ConnCreate(sock, protocol, kNetCliModeServerStart);
if (cli) {
AsyncSocketEnableNagling(sock, !unbuffered);
cli->encryptFcn = encryptFcn;
cli->encryptParam = encryptParam;
SetConnSeed(cli, seedBytes, seedData);
}
return cli;
}
#endif
//============================================================================
#ifdef SERVER
void NetCliListenReject (
AsyncSocket sock,
ENetError error
) {
if (sock) {
Connect::NetCli_Srv2Cli_Error response;
response.message = Connect::kNetCliSrv2CliError;
response.length = sizeof(response);
response.error = error;
AsyncSocketSend(sock, &response, sizeof(response));
}
}
#endif
//============================================================================
void NetCliClearSocket (NetCli * cli) {
cli->sock = nil;
}
//============================================================================
void NetCliSetQueue (
NetCli * cli,
NetCliQueue * queue
) {
cli->queue = queue;
}
//============================================================================
void NetCliDisconnect (
NetCli * cli,
bool hardClose
) {
// send any existing messages and allow
// the socket layer to complete sending data
if (!hardClose)
NetCliFlush(cli);
if (cli->sock)
AsyncSocketDisconnect(cli->sock, hardClose);
// don't allow any more messages to be received
cli->recvDispatch = false;
}
//============================================================================
void NetCliDelete (
NetCli * cli,
bool deleteSocket
) {
NetMsgChannelUnlock(cli->channel);
if (cli->sock && deleteSocket)
AsyncSocketDelete(cli->sock);
if (cli->cryptIn)
CryptKeyClose(cli->cryptIn);
if (cli->cryptOut)
CryptKeyClose(cli->cryptOut);
cli->input.Clear();
cli->recvBuffer.Clear();
DEL(cli);
}
//============================================================================
void NetCliFlush (
NetCli * cli
) {
if (cli->sendCurr != cli->sendBuffer)
FlushSendBuffer(cli);
}
//============================================================================
void NetCliSend (
NetCli * cli,
const uintptr_t msg[],
unsigned count
) {
BufferedSendData(cli, msg, count);
}
//============================================================================
bool NetCliDispatch (
NetCli * cli,
const uint8_t data[],
unsigned bytes,
void * param
) {
if (!cli->recvDispatch)
return false;
do {
if (cli->mode == kNetCliModeEncrypted) {
// Decrypt data...
uint8_t * temp, * heap = NULL;
if (cli->cryptIn) {
if (bytes <= 2048)
// uint8_t count is small, use stack-based buffer
temp = ALLOCA(uint8_t, bytes);
else
// uint8_t count is large, use heap-based buffer
temp = heap = (uint8_t *)ALLOC(bytes);
MemCopy(temp, data, bytes);
CryptDecrypt(cli->cryptIn, bytes, temp);
data = temp;
}
// Add data to accumulator and dispatch
cli->input.Add(bytes, data);
bool result = DispatchData(cli, param);
#ifndef PLASMA_EXTERNAL_RELEASE
// Write to the netlog
if (s_netlog) {
NetLogMessage_Header header;
header.m_protocol = cli->protocol;
header.m_direction = 1; // kSrv2Cli
header.m_time = GetAdjustedTimer();
header.m_size = bytes;
EnterCriticalSection(&s_pipeCritical);
DWORD bytesWritten;
WriteFile(s_netlog, &header, sizeof(header), &bytesWritten, NULL);
WriteFile(s_netlog, data, bytes, &bytesWritten, NULL);
LeaveCriticalSection(&s_pipeCritical);
}
#endif // PLASMA_EXTERNAL_RELEASE
#ifdef SERVER
cli->recvDispatch = result;
#endif
// free heap buffer (if any)
FREE(heap);
cli->input.Compact();
return cli->recvDispatch;
}
// Dispatch connect packets until encryption starts
unsigned used = Connect::DispatchPacket(cli, bytes, data);
if (!used)
return false;
data += used;
bytes -= used;
} while (bytes);
return true;
}