|
|
|
/*==LICENSE==*
|
|
|
|
|
|
|
|
CyanWorlds.com Engine - MMOG client, server and tools
|
|
|
|
Copyright (C) 2011 Cyan Worlds, Inc.
|
|
|
|
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
|
|
|
|
Additional permissions under GNU GPL version 3 section 7
|
|
|
|
|
|
|
|
If you modify this Program, or any covered work, by linking or
|
|
|
|
combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK,
|
|
|
|
NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent
|
|
|
|
JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK
|
|
|
|
(or a modified version of those libraries),
|
|
|
|
containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA,
|
|
|
|
PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG
|
|
|
|
JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the
|
|
|
|
licensors of this Program grant you additional
|
|
|
|
permission to convey the resulting work. Corresponding Source for a
|
|
|
|
non-source form of such a combination shall include the source code for
|
|
|
|
the parts of OpenSSL and IJG JPEG Library used as well as that of the covered
|
|
|
|
work.
|
|
|
|
|
|
|
|
You can contact Cyan Worlds, Inc. by email legal@cyan.com
|
|
|
|
or by snail mail at:
|
|
|
|
Cyan Worlds, Inc.
|
|
|
|
14617 N Newport Hwy
|
|
|
|
Mead, WA 99021
|
|
|
|
|
|
|
|
*==LICENSE==*/
|
|
|
|
#include "plAnimEaseTypes.h"
|
|
|
|
#include "plAnimTimeConvert.h"
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
plATCEaseCurve *plATCEaseCurve::CreateEaseCurve(uint8_t type, float minLength, float maxLength, float length,
|
|
|
|
float startSpeed, float goalSpeed)
|
|
|
|
{
|
|
|
|
if (type == plAnimEaseTypes::kConstAccel)
|
|
|
|
return new plConstAccelEaseCurve(minLength, maxLength, length, startSpeed, goalSpeed);
|
|
|
|
if (type == plAnimEaseTypes::kSpline)
|
|
|
|
return new plSplineEaseCurve(minLength, maxLength, length, startSpeed, goalSpeed);
|
|
|
|
|
|
|
|
return nil;
|
|
|
|
}
|
|
|
|
|
|
|
|
void plATCEaseCurve::RecalcToSpeed(float startSpeed, float goalSpeed, hsBool preserveRate /* = false */)
|
|
|
|
{
|
|
|
|
float rate = 1;
|
|
|
|
|
|
|
|
if (fSpeed == goalSpeed && fStartSpeed == startSpeed) // already there, no need to do anything
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (preserveRate)
|
|
|
|
rate = (fSpeed - fStartSpeed) / fLength;
|
|
|
|
|
|
|
|
fStartSpeed = startSpeed;
|
|
|
|
fSpeed = goalSpeed;
|
|
|
|
|
|
|
|
if (preserveRate)
|
|
|
|
SetLengthOnRate(rate);
|
|
|
|
}
|
|
|
|
|
|
|
|
void plATCEaseCurve::SetLengthOnRate(float rate)
|
|
|
|
{
|
|
|
|
fLength = (fSpeed - fStartSpeed) / rate;
|
|
|
|
if (fLength < 0)
|
|
|
|
fLength = -fLength;
|
|
|
|
}
|
|
|
|
|
|
|
|
float plATCEaseCurve::GetMinDistance()
|
|
|
|
{
|
|
|
|
if (fMinLength == 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
float oldLength = fLength;
|
|
|
|
fLength = fMinLength;
|
|
|
|
float result = PositionGivenTime(fMinLength);
|
|
|
|
fLength = oldLength;
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
float plATCEaseCurve::GetMaxDistance()
|
|
|
|
{
|
|
|
|
if (fMaxLength == 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
float oldLength = fLength;
|
|
|
|
fLength = fMaxLength;
|
|
|
|
float result = PositionGivenTime(fMaxLength);
|
|
|
|
fLength = oldLength;
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
float plATCEaseCurve::GetNormDistance()
|
|
|
|
{
|
|
|
|
if (fNormLength == 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
float oldLength = fLength;
|
|
|
|
fLength = fNormLength;
|
|
|
|
float result = PositionGivenTime(fNormLength);
|
|
|
|
fLength = oldLength;
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
void plATCEaseCurve::Read(hsStream *s, hsResMgr *mgr)
|
|
|
|
{
|
|
|
|
plCreatable::Read(s, mgr);
|
|
|
|
|
|
|
|
fMinLength = s->ReadLEScalar();
|
|
|
|
fMaxLength = s->ReadLEScalar();
|
|
|
|
fNormLength = fLength = s->ReadLEScalar();
|
|
|
|
fStartSpeed = s->ReadLEScalar();
|
|
|
|
fSpeed = s->ReadLEScalar();
|
|
|
|
fBeginWorldTime = s->ReadLEDouble();
|
|
|
|
}
|
|
|
|
|
|
|
|
void plATCEaseCurve::Write(hsStream *s, hsResMgr *mgr)
|
|
|
|
{
|
|
|
|
plCreatable::Write(s, mgr);
|
|
|
|
|
|
|
|
s->WriteLEScalar(fMinLength);
|
|
|
|
s->WriteLEScalar(fMaxLength);
|
|
|
|
s->WriteLEScalar(fNormLength);
|
|
|
|
s->WriteLEScalar(fStartSpeed);
|
|
|
|
s->WriteLEScalar(fSpeed);
|
|
|
|
s->WriteLEDouble(fBeginWorldTime);
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
plConstAccelEaseCurve::plConstAccelEaseCurve()
|
|
|
|
{
|
|
|
|
fMinLength = fMaxLength = fNormLength = fLength = 1;
|
|
|
|
fBeginWorldTime = 0;
|
|
|
|
|
|
|
|
RecalcToSpeed(0, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
plConstAccelEaseCurve::plConstAccelEaseCurve(float minLength, float maxLength, float length,
|
|
|
|
float startSpeed, float goalSpeed)
|
|
|
|
{
|
|
|
|
fMinLength = minLength;
|
|
|
|
fMaxLength = maxLength;
|
|
|
|
fNormLength = fLength = length;
|
|
|
|
fBeginWorldTime = 0;
|
|
|
|
|
|
|
|
RecalcToSpeed(startSpeed, goalSpeed);
|
|
|
|
}
|
|
|
|
|
|
|
|
plATCEaseCurve *plConstAccelEaseCurve::Clone() const
|
|
|
|
{
|
|
|
|
plConstAccelEaseCurve *curve = new plConstAccelEaseCurve;
|
|
|
|
curve->fStartSpeed = fStartSpeed;
|
|
|
|
curve->fMinLength = fMinLength;
|
|
|
|
curve->fMaxLength = fMaxLength;
|
|
|
|
curve->fNormLength = fNormLength;
|
|
|
|
curve->fBeginWorldTime = fBeginWorldTime;
|
|
|
|
curve->fLength = fLength;
|
|
|
|
curve->fSpeed = fSpeed;
|
|
|
|
|
|
|
|
return curve;
|
|
|
|
}
|
|
|
|
|
|
|
|
void plConstAccelEaseCurve::SetLengthOnDistance(float dist)
|
|
|
|
{
|
|
|
|
fLength = 2 * dist / (fSpeed + fStartSpeed);
|
|
|
|
}
|
|
|
|
|
|
|
|
float plConstAccelEaseCurve::PositionGivenTime(float time) const
|
|
|
|
{
|
|
|
|
return (float)(fStartSpeed * time + (0.5 * (fSpeed - fStartSpeed) / fLength) * time * time);
|
|
|
|
}
|
|
|
|
|
|
|
|
float plConstAccelEaseCurve::VelocityGivenTime(float time) const
|
|
|
|
{
|
|
|
|
return fStartSpeed + ((fSpeed - fStartSpeed) / fLength) * time;
|
|
|
|
}
|
|
|
|
|
|
|
|
float plConstAccelEaseCurve::TimeGivenVelocity(float velocity) const
|
|
|
|
{
|
|
|
|
return (velocity - fStartSpeed) / ((fSpeed - fStartSpeed) / fLength);
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
plSplineEaseCurve::plSplineEaseCurve()
|
|
|
|
{
|
|
|
|
fMinLength = fMaxLength = fNormLength = fLength = 1;
|
|
|
|
fBeginWorldTime = 0;
|
|
|
|
|
|
|
|
RecalcToSpeed(0, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
plSplineEaseCurve::plSplineEaseCurve(float minLength, float maxLength, float length,
|
|
|
|
float startSpeed, float goalSpeed)
|
|
|
|
{
|
|
|
|
fMinLength = minLength;
|
|
|
|
fMaxLength = maxLength;
|
|
|
|
fNormLength = fLength = length;
|
|
|
|
fBeginWorldTime = 0;
|
|
|
|
|
|
|
|
RecalcToSpeed(startSpeed, goalSpeed);
|
|
|
|
}
|
|
|
|
|
|
|
|
plATCEaseCurve *plSplineEaseCurve::Clone() const
|
|
|
|
{
|
|
|
|
plSplineEaseCurve *curve = new plSplineEaseCurve;
|
|
|
|
curve->fStartSpeed = fStartSpeed;
|
|
|
|
curve->fMinLength = fMinLength;
|
|
|
|
curve->fMaxLength = fMaxLength;
|
|
|
|
curve->fNormLength = fNormLength;
|
|
|
|
curve->fBeginWorldTime = fBeginWorldTime;
|
|
|
|
curve->fLength = fLength;
|
|
|
|
curve->fSpeed = fSpeed;
|
|
|
|
|
|
|
|
int i;
|
|
|
|
for (i = 0; i < 4; i++)
|
|
|
|
curve->fCoef[i] = fCoef[i];
|
|
|
|
|
|
|
|
return curve;
|
|
|
|
}
|
|
|
|
|
|
|
|
void plSplineEaseCurve::RecalcToSpeed(float startSpeed, float goalSpeed, hsBool preserveRate /* = false */)
|
|
|
|
{
|
|
|
|
plATCEaseCurve::RecalcToSpeed(startSpeed, goalSpeed, preserveRate);
|
|
|
|
|
|
|
|
// These are greatly simplified because the in/out tangents are always zero
|
|
|
|
// Note: "b" is always zero for the ease splines we're currently doing (and will remain that way
|
|
|
|
// so long as the initial acceleration is zero. Can optimize a bit of the eval math to take
|
|
|
|
// advantage of this.
|
|
|
|
float a, b, c, d;
|
|
|
|
|
|
|
|
a = fStartSpeed;
|
|
|
|
b = 0;
|
|
|
|
c = -3 * fStartSpeed + 3 * fSpeed;
|
|
|
|
d = 2 * fStartSpeed - 2 * fSpeed;
|
|
|
|
|
|
|
|
fCoef[0] = a;
|
|
|
|
fCoef[1] = b;
|
|
|
|
fCoef[2] = c;
|
|
|
|
fCoef[3] = d;
|
|
|
|
}
|
|
|
|
|
|
|
|
void plSplineEaseCurve::SetLengthOnDistance(float dist)
|
|
|
|
{
|
|
|
|
float curDist = PositionGivenTime(fLength);
|
|
|
|
|
|
|
|
fLength = fLength * dist / curDist;
|
|
|
|
}
|
|
|
|
|
|
|
|
float plSplineEaseCurve::PositionGivenTime(float time) const
|
|
|
|
{
|
|
|
|
float t1, t2, t3, t4;
|
|
|
|
t1 = time / fLength;
|
|
|
|
t2 = t1 * t1;
|
|
|
|
t3 = t2 * t1;
|
|
|
|
t4 = t3 * t1;
|
|
|
|
|
|
|
|
return fLength * (fCoef[0] * t1 + fCoef[1] * t2 / 2 + fCoef[2] * t3 / 3 + fCoef[3] * t4 / 4);
|
|
|
|
}
|
|
|
|
|
|
|
|
float plSplineEaseCurve::VelocityGivenTime(float time) const
|
|
|
|
{
|
|
|
|
float t1, t2, t3;
|
|
|
|
t1 = time / fLength;
|
|
|
|
t2 = t1 * t1;
|
|
|
|
t3 = t2 * t1;
|
|
|
|
return fCoef[0] + fCoef[1] * t1 + fCoef[2] * t2 + fCoef[3] * t3;
|
|
|
|
}
|
|
|
|
|
|
|
|
float plSplineEaseCurve::TimeGivenVelocity(float velocity) const
|
|
|
|
{
|
|
|
|
// Code based off of Graphics Gems V, pp 11-12 and
|
|
|
|
// http://www.worldserver.com/turk/opensource/FindCubicRoots.c.txt
|
|
|
|
|
|
|
|
// Solving the equation: fCoef[0] + fCoef[1] * t + fCoef[2] * t^2 + fCoef[3] * t^3 - velocity = 0
|
|
|
|
|
|
|
|
float root;
|
|
|
|
float a = (fCoef[0] - velocity) / fCoef[3];
|
|
|
|
float b = fCoef[1] / fCoef[3];
|
|
|
|
float c = fCoef[2] / fCoef[3];
|
|
|
|
|
|
|
|
float Q = (c * c - 3 * b) / 9;
|
|
|
|
float R = (2 * c * c * c - 9 * c * b + 27 * a) / 54;
|
|
|
|
float Q3 = Q * Q * Q;
|
|
|
|
float D = Q3 - R * R;
|
|
|
|
|
|
|
|
if (D >= 0)
|
|
|
|
{
|
|
|
|
// 3 roots, find the one in the range [0, 1]
|
|
|
|
const float pi = 3.14159;
|
|
|
|
double theta = acos(R / sqrt(Q3));
|
|
|
|
double sqrtQ = sqrt(Q);
|
|
|
|
|
|
|
|
root = (float)(-2 * sqrtQ * cos((theta + 4 * pi) / 3) - c / 3); // Middle root, most likely to match
|
|
|
|
if (root < 0.f || root > 1.f)
|
|
|
|
{
|
|
|
|
root = (float)(-2 * sqrtQ * cos((theta + 2 * pi) / 3) - c / 3); // Lower root
|
|
|
|
if (root < 0.f || root > 1.f)
|
|
|
|
{
|
|
|
|
root = (float)(-2 * sqrtQ * cos(theta / 3) - c / 3); // Upper root
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else // One root to the equation (I don't expect this to happen for ease splines, but JIC)
|
|
|
|
{
|
|
|
|
double E = sqrt(-D) + pow(fabs(R), 1.f / 3.f);
|
|
|
|
root = (float)((E + Q / E) - c / 3);
|
|
|
|
if (R > 0)
|
|
|
|
root = -root;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (root < 0.f || root > 1.f)
|
|
|
|
{
|
|
|
|
hsAssert(false, "No valid root found while solving animation spline");
|
|
|
|
// Either a bug, or a rare case of floating-point inaccuracy. Either way, guess
|
|
|
|
// the proper root as either the start or end of the curve based on the velocity.
|
|
|
|
float dStart = velocity - fStartSpeed;
|
|
|
|
if (dStart < 0)
|
|
|
|
dStart = -dStart;
|
|
|
|
float dEnd = velocity - fSpeed;
|
|
|
|
if (dEnd < 0)
|
|
|
|
dEnd = -dEnd;
|
|
|
|
|
|
|
|
root = (dStart < dEnd ? 0.f : 1.f);
|
|
|
|
}
|
|
|
|
|
|
|
|
return root * fLength;
|
|
|
|
}
|
|
|
|
|
|
|
|
void plSplineEaseCurve::Read(hsStream *s, hsResMgr *mgr)
|
|
|
|
{
|
|
|
|
plATCEaseCurve::Read(s, mgr);
|
|
|
|
|
|
|
|
fCoef[0] = s->ReadLEScalar();
|
|
|
|
fCoef[1] = s->ReadLEScalar();
|
|
|
|
fCoef[2] = s->ReadLEScalar();
|
|
|
|
fCoef[3] = s->ReadLEScalar();
|
|
|
|
}
|
|
|
|
|
|
|
|
void plSplineEaseCurve::Write(hsStream *s, hsResMgr *mgr)
|
|
|
|
{
|
|
|
|
plATCEaseCurve::Write(s, mgr);
|
|
|
|
|
|
|
|
s->WriteLEScalar(fCoef[0]);
|
|
|
|
s->WriteLEScalar(fCoef[1]);
|
|
|
|
s->WriteLEScalar(fCoef[2]);
|
|
|
|
s->WriteLEScalar(fCoef[3]);
|
|
|
|
}
|
|
|
|
|