|
|
|
/*==LICENSE==*
|
|
|
|
|
|
|
|
CyanWorlds.com Engine - MMOG client, server and tools
|
|
|
|
Copyright (C) 2011 Cyan Worlds, Inc.
|
|
|
|
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
|
|
|
|
Additional permissions under GNU GPL version 3 section 7
|
|
|
|
|
|
|
|
If you modify this Program, or any covered work, by linking or
|
|
|
|
combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK,
|
|
|
|
NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent
|
|
|
|
JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK
|
|
|
|
(or a modified version of those libraries),
|
|
|
|
containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA,
|
|
|
|
PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG
|
|
|
|
JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the
|
|
|
|
licensors of this Program grant you additional
|
|
|
|
permission to convey the resulting work. Corresponding Source for a
|
|
|
|
non-source form of such a combination shall include the source code for
|
|
|
|
the parts of OpenSSL and IJG JPEG Library used as well as that of the covered
|
|
|
|
work.
|
|
|
|
|
|
|
|
You can contact Cyan Worlds, Inc. by email legal@cyan.com
|
|
|
|
or by snail mail at:
|
|
|
|
Cyan Worlds, Inc.
|
|
|
|
14617 N Newport Hwy
|
|
|
|
Mead, WA 99021
|
|
|
|
|
|
|
|
*==LICENSE==*/
|
|
|
|
|
|
|
|
#include "HeadSpin.h"
|
|
|
|
#include "hsGeometry3.h"
|
|
|
|
#include <math.h>
|
|
|
|
#include "plTriUtils.h"
|
|
|
|
|
|
|
|
static const float kAlmostZero = 1.e-5f;
|
|
|
|
static const float kPastZero = -kAlmostZero;
|
|
|
|
static const float kPastOne = 1.f + kAlmostZero;
|
|
|
|
static const float kAlmostOne = 1.f - kAlmostZero;
|
|
|
|
static const float kAlmostZeroSquared = kAlmostZero*kAlmostZero;
|
|
|
|
|
|
|
|
static inline hsVector3 Cross(const hsScalarTriple& p0, const hsScalarTriple& p1)
|
|
|
|
{
|
|
|
|
return hsVector3(p0.fY * p1.fZ - p0.fZ * p1.fY,
|
|
|
|
p0.fZ * p1.fX - p0.fX * p1.fZ,
|
|
|
|
p0.fX * p1.fY - p0.fY * p1.fX);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// There's actually a possibly faster way to do all this.
|
|
|
|
// The barycentric coordinate in 3-space is the same as the barycentric coordinate of the projection
|
|
|
|
// in 2-space, as long as the projection doesn't degenerate the triangle (i.e. project the tri onto
|
|
|
|
// a plane perpindicular to the tri). The tri can't be perpindicular to all three major axes, so by
|
|
|
|
// picking the right one (or just not picking the wrong one), the lengths of the cross products becomes
|
|
|
|
// just the z component (e.g. v0.x*v1.y - v0.y*v1.x), so all the square roots go away (not to mention all
|
|
|
|
// the vector math going from 3 component to 2).
|
|
|
|
plTriUtils::Bary plTriUtils::ComputeBarycentricProjection(const hsPoint3& p0, const hsPoint3& p1, const hsPoint3& p2, hsPoint3&p, hsPoint3& out)
|
|
|
|
{
|
|
|
|
hsVector3 v12(&p1, &p2);
|
|
|
|
hsVector3 v02(&p0, &p2);
|
|
|
|
hsVector3 norm = Cross(v12, v02);
|
|
|
|
|
|
|
|
float invLenSq12 = norm.MagnitudeSquared();
|
|
|
|
if( invLenSq12 < kAlmostZero )
|
|
|
|
return kDegenerateTri; // degenerate triangle
|
|
|
|
|
|
|
|
invLenSq12 = 1.f / invLenSq12;
|
|
|
|
|
|
|
|
p += norm * (hsVector3(&p2, &p).InnerProduct(norm) * invLenSq12);
|
|
|
|
|
|
|
|
hsVector3 vp2(&p, &p2);
|
|
|
|
hsVector3 v0 = Cross(v12, vp2);
|
|
|
|
hsVector3 v1 = Cross(vp2, v02);
|
|
|
|
|
|
|
|
return IComputeBarycentric(norm, invLenSq12, v0, v1, out);
|
|
|
|
}
|
|
|
|
|
|
|
|
plTriUtils::Bary plTriUtils::ComputeBarycentric(const hsPoint3& p0, const hsPoint3& p1, const hsPoint3& p2, const hsPoint3&p, hsPoint3& out)
|
|
|
|
{
|
|
|
|
hsVector3 v12(&p1, &p2);
|
|
|
|
hsVector3 v02(&p0, &p2);
|
|
|
|
hsVector3 norm = Cross(v12, v02);
|
|
|
|
float invLenSq12 = norm.MagnitudeSquared();
|
|
|
|
if( invLenSq12 < kAlmostZero )
|
|
|
|
return kDegenerateTri; // degenerate triangle
|
|
|
|
|
|
|
|
invLenSq12 = 1.f / invLenSq12;
|
|
|
|
|
|
|
|
hsVector3 vp2(&p, &p2);
|
|
|
|
hsVector3 v0 = Cross(v12, vp2);
|
|
|
|
hsVector3 v1 = Cross(vp2, v02);
|
|
|
|
|
|
|
|
return IComputeBarycentric(norm, invLenSq12, v0, v1, out);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
plTriUtils::Bary plTriUtils::IComputeBarycentric(const hsVector3& v12, float invLenSq12, const hsVector3& v0, const hsVector3& v1, hsPoint3& out)
|
|
|
|
{
|
|
|
|
uint32_t state = 0;
|
|
|
|
|
|
|
|
float lenSq0 = v0.MagnitudeSquared();
|
|
|
|
if( lenSq0 < kAlmostZeroSquared )
|
|
|
|
{
|
|
|
|
// On edge p1-p2;
|
|
|
|
out[0] = 0;
|
|
|
|
state |= kOnEdge12;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
out[0] = lenSq0 * invLenSq12;
|
|
|
|
out[0] = sqrt(out[0]);
|
|
|
|
//
|
|
|
|
if( v0.InnerProduct(v12) < 0 )
|
|
|
|
{
|
|
|
|
out[0] = -out[0];
|
|
|
|
state |= kOutsideTri;
|
|
|
|
}
|
|
|
|
else if( out[0] > kPastOne )
|
|
|
|
state |= kOutsideTri;
|
|
|
|
else if( out[0] > kAlmostOne )
|
|
|
|
state |= kOnVertex0;
|
|
|
|
}
|
|
|
|
|
|
|
|
float lenSq1 = v1.MagnitudeSquared();
|
|
|
|
if( lenSq1 < kAlmostZeroSquared )
|
|
|
|
{
|
|
|
|
// On edge p0-p2
|
|
|
|
out[1] = 0;
|
|
|
|
state |= kOnEdge02;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
out[1] = lenSq1 * invLenSq12;
|
|
|
|
out[1] = sqrt(out[1]);
|
|
|
|
|
|
|
|
if( v1.InnerProduct(v12) < 0 )
|
|
|
|
{
|
|
|
|
out[1] = -out[1];
|
|
|
|
state |= kOutsideTri;
|
|
|
|
}
|
|
|
|
else if( out[1] > kPastOne )
|
|
|
|
state |= kOutsideTri;
|
|
|
|
else if( out[1] > kAlmostOne )
|
|
|
|
state |= kOnVertex1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Could make more robust against precision problems
|
|
|
|
// by repeating above for out[2], then normalizing
|
|
|
|
// so sum(out[i]) = 1.f
|
|
|
|
out[2] = 1.f - out[0] - out[1];
|
|
|
|
|
|
|
|
if( out[2] < kPastZero )
|
|
|
|
state |= kOutsideTri;
|
|
|
|
else if( out[2] < kAlmostZero )
|
|
|
|
state |= kOnEdge01;
|
|
|
|
else if( out[2] > kAlmostOne )
|
|
|
|
state |= kOnVertex2;
|
|
|
|
|
|
|
|
/*
|
|
|
|
if( a,b,c outside range [0..1] )
|
|
|
|
p is outside tri;
|
|
|
|
else if( a,b,c == 1 )
|
|
|
|
p is on vert;
|
|
|
|
else if( a,b,c == 0 )
|
|
|
|
p is on edge;
|
|
|
|
*/
|
|
|
|
|
|
|
|
if( state & kOutsideTri )
|
|
|
|
return kOutsideTri;
|
|
|
|
|
|
|
|
if( state & kOnVertex )
|
|
|
|
return Bary(state & kOnVertex);
|
|
|
|
|
|
|
|
if( state & kOnEdge )
|
|
|
|
return Bary(state & kOnEdge);
|
|
|
|
|
|
|
|
return kInsideTri;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int plTriUtils::ISelectAxis(const hsVector3& norm)
|
|
|
|
{
|
|
|
|
int retVal = -2;
|
|
|
|
float maxDim = 0;
|
|
|
|
int i;
|
|
|
|
for( i = 0; i < 3; i++ )
|
|
|
|
{
|
|
|
|
if( norm[i] > maxDim )
|
|
|
|
{
|
|
|
|
maxDim = norm[i];
|
|
|
|
retVal = i;
|
|
|
|
}
|
|
|
|
else if( -norm[i] > maxDim )
|
|
|
|
{
|
|
|
|
maxDim = -norm[i];
|
|
|
|
retVal = i;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return retVal;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool plTriUtils::IFastBarycentric(int iAx, const hsPoint3& p0, const hsPoint3& p1, const hsPoint3& p2, const hsPoint3&p, hsPoint3& out)
|
|
|
|
{
|
|
|
|
if( --iAx < 0 )
|
|
|
|
iAx = 2;
|
|
|
|
int jAx = iAx - 1;
|
|
|
|
if( jAx < 0 )
|
|
|
|
jAx = 2;
|
|
|
|
|
|
|
|
hsVector3 v02(&p0, &p2);
|
|
|
|
hsVector3 v12(&p1, &p2);
|
|
|
|
|
|
|
|
float totArea = v02[iAx] * v12[jAx] - v02[jAx] * v12[iAx];
|
|
|
|
hsAssert(totArea != 0, "Should have already filtered degerate tris and degenerate projection");
|
|
|
|
|
|
|
|
float invTotArea = 1.f / totArea;
|
|
|
|
|
|
|
|
hsVector3 vp2(&p, &p2);
|
|
|
|
|
|
|
|
float aArea = vp2[iAx] * v12[jAx] - vp2[jAx] * v12[iAx];
|
|
|
|
|
|
|
|
float bArea = v02[iAx] * vp2[jAx] - v02[jAx] * vp2[iAx];
|
|
|
|
|
|
|
|
out[0] = aArea * invTotArea;
|
|
|
|
out[1] = bArea * invTotArea;
|
|
|
|
out[2] = 1.f - out[0] - out[1];
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool plTriUtils::FastBarycentricProjection(const hsPoint3& p0, const hsPoint3& p1, const hsPoint3& p2, hsPoint3&p, hsPoint3& out)
|
|
|
|
{
|
|
|
|
hsVector3 v02(&p0, &p2);
|
|
|
|
hsVector3 v12(&p1, &p2);
|
|
|
|
|
|
|
|
hsVector3 norm = Cross(v12, v02);
|
|
|
|
float invLenSq12 = norm.MagnitudeSquared();
|
|
|
|
if( invLenSq12 < kAlmostZero )
|
|
|
|
return false; // degenerate triangle
|
|
|
|
|
|
|
|
invLenSq12 = 1.f / invLenSq12;
|
|
|
|
|
|
|
|
hsVector3 del(&p0, &p);
|
|
|
|
float delDotNormOverLenSq = del.InnerProduct(norm) * invLenSq12;
|
|
|
|
|
|
|
|
p += norm * delDotNormOverLenSq;
|
|
|
|
|
|
|
|
int iAx = ISelectAxis(norm);
|
|
|
|
hsAssert(iAx >= 0, "Should have already picked out degenerate tris");
|
|
|
|
|
|
|
|
return IFastBarycentric(iAx, p0, p1, p2, p, out);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool plTriUtils::FastBarycentric(const hsPoint3& p0, const hsPoint3& p1, const hsPoint3& p2, const hsPoint3&p, hsPoint3& out)
|
|
|
|
{
|
|
|
|
hsVector3 v02(&p0, &p2);
|
|
|
|
hsVector3 v12(&p1, &p2);
|
|
|
|
int iAx = ISelectAxis(Cross(v12, v02));
|
|
|
|
if( iAx < 0 )
|
|
|
|
return false;
|
|
|
|
return IFastBarycentric(iAx, p0, p1, p2, p, out);
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
bool plTriUtils::ProjectOntoPlane(const hsVector3& norm, float dist, hsPoint3& p)
|
|
|
|
{
|
|
|
|
float normMagSq = norm.MagnitudeSquared();
|
|
|
|
if( normMagSq > kAlmostZero )
|
|
|
|
{
|
|
|
|
dist /= normMagSq;
|
|
|
|
|
|
|
|
p += norm * dist;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool plTriUtils::ProjectOntoPlane(const hsPoint3& p0, const hsPoint3& p1, const hsPoint3& p2, hsPoint3& p)
|
|
|
|
{
|
|
|
|
hsVector3 v02(&p0, &p2);
|
|
|
|
hsVector3 v12(&p1, &p2);
|
|
|
|
|
|
|
|
hsVector3 norm = v12 % v02;
|
|
|
|
|
|
|
|
float dist = norm.InnerProduct(p0 - p);
|
|
|
|
|
|
|
|
return ProjectOntoPlane(norm, dist, p);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool plTriUtils::ProjectOntoPlaneAlongVector(const hsVector3& norm, float dist, const hsVector3& vec, hsPoint3& p)
|
|
|
|
{
|
|
|
|
float s = norm.InnerProduct(vec);
|
|
|
|
const float kAlmostZero = 1.e-5f;
|
|
|
|
if( (s > kAlmostZero)||(s < kPastZero) )
|
|
|
|
{
|
|
|
|
dist /= s;
|
|
|
|
|
|
|
|
p += vec * dist;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool plTriUtils::ProjectOntoPlaneAlongVector(const hsPoint3& p0, const hsPoint3& p1, const hsPoint3& p2, const hsVector3& vec, hsPoint3& p)
|
|
|
|
{
|
|
|
|
hsVector3 v02(&p0, &p2);
|
|
|
|
hsVector3 v12(&p1, &p2);
|
|
|
|
|
|
|
|
hsVector3 norm = v12 % v02;
|
|
|
|
float dist = norm.InnerProduct(p0 - p);
|
|
|
|
|
|
|
|
return ProjectOntoPlaneAlongVector(norm, dist, vec, p);
|
|
|
|
}
|