1270 lines
35 KiB

/*==LICENSE==*
CyanWorlds.com Engine - MMOG client, server and tools
Copyright (C) 2011 Cyan Worlds, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Additional permissions under GNU GPL version 3 section 7
If you modify this Program, or any covered work, by linking or
combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK,
NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent
JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK
(or a modified version of those libraries),
containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA,
PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG
JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the
licensors of this Program grant you additional
permission to convey the resulting work. Corresponding Source for a
non-source form of such a combination shall include the source code for
the parts of OpenSSL and IJG JPEG Library used as well as that of the covered
work.
You can contact Cyan Worlds, Inc. by email legal@cyan.com
or by snail mail at:
Cyan Worlds, Inc.
14617 N Newport Hwy
Mead, WA 99021
*==LICENSE==*/
#ifndef hsTemplatesDefined
#define hsTemplatesDefined
#include "hsExceptions.h"
#include "hsMemory.h"
#include "hsRefCnt.h"
#include <stdarg.h>
#ifdef HS_DEBUGGING
// #define HS_DEBUGTARRAY
#endif
#ifdef HS_DEBUGTARRAY
// just a quickie d-link list class for debugging
class hsDlistNode
{
public:
static hsDlistNode *fpFirst;
static hsDlistNode *fpLast;
static uint32_t fcreated;
static uint32_t fdestroyed;
void *fpThing;
hsDlistNode *fpPrev;
hsDlistNode *fpNext;
hsDlistNode(void *tng): fpThing(tng), fpNext(0), fpPrev(0) { AddNode(); }
void AddNode();
void RemoveNode();
hsDlistNode *GetNext() { return fpNext; }
};
#endif
// Use this for a pointer to a single object of class T allocated with new
template <class T> class hsTempObject {
T* fObject;
public:
hsTempObject(): fObject(nil){}
hsTempObject(T* p) : fObject(p) {}
hsTempObject(const hsTempObject & that)
{*this=that;}
~hsTempObject() { delete fObject; }
hsTempObject & operator=(const hsTempObject & src)
{
if (fObject!=src.fObject)
{
delete fObject;
fObject=src.fObject;
}
return *this;
}
hsTempObject & operator=(T * ptr)
{
if (fObject!=ptr)
{
delete fObject;
fObject=ptr;
}
return *this;
}
operator T*() const { return fObject; }
operator T*&() { return fObject; }
operator const T&() const { return *fObject; }
operator bool() const { return fObject!=nil;}
T * operator->() const { return fObject; }
T * operator *() const { return fObject; }
};
// Use this for subclasses of hsRefCnt, where UnRef should be called at the end
template <class T> class hsTempRef {
T* fObject;
public:
hsTempRef(T* object = nil) : fObject(object) {}
~hsTempRef() { if (fObject) fObject->UnRef(); }
operator T*() const { return fObject; }
T* operator->() const { return fObject; }
T* operator=(T* src) { hsRefCnt_SafeUnRef(fObject); fObject = src; return fObject; }
};
// Use this for an array of objects of class T allocated with new[]
template <class T> class hsTempArray {
T* fArray;
uint32_t fCount;
hsTempArray<T>& operator=(const hsTempArray<T>&);
public:
hsTempArray(long count) : fArray(new T[count]), fCount(count)
{
}
hsTempArray(long count, T initValue) : fArray(new T[count]), fCount(count)
{
for (int i = 0; i < count; i++)
fArray[i] = initValue;
}
hsTempArray(T* p) : fArray(p), fCount(1)
{
}
hsTempArray() : fArray(nil), fCount(0)
{
}
~hsTempArray()
{
delete[] fArray;
}
operator T*() const { return fArray; }
T* GetArray() const { return fArray; }
void Accomodate(uint32_t count)
{
if (count > fCount)
{ delete[] fArray;
fCount = count;
fArray = new T[count];
}
}
};
////////////////////////////////////////////////////////////////////////////////
//
//// Like hsTempArray, but more useful when working with char * type arrays.
//enum KStringFormatConstructor {kFmtCtor};
//enum KStringFormatVConstructor {kFmtVCtor};
//class hsTempString
//{
//public:
// char * fStr;
// hsTempString(): fStr(nil){}
// hsTempString(char * p) : fStr(p) {}
// hsTempString(const char * p) { fStr=hsStrcpy(p); }
// hsTempString(KStringFormatConstructor, char * fmt, ...);
// hsTempString(KStringFormatVConstructor, char * fmt, va_list args);
// hsTempString(const hsTempString & other):fStr(hsStrcpy(other.fStr)){}
// virtual ~hsTempString() { delete [] fStr; }
// hsTempString & operator=(char * ptr)
// {
// if (fStr!=ptr)
// {
// delete [] fStr;
// fStr=ptr;
// }
// return *this;
// }
// hsTempString & operator=(const hsTempString & other)
// {
// delete [] fStr;
// fStr=hsStrcpy(other.fStr);
// return *this;
// }
// operator char *() const { return fStr; }
// operator char *&() { return fStr; }
// operator const char *() const { return fStr; }
// operator bool() const { return fStr!=nil;}
// char * operator *() const { return fStr; }
// const char* c_str() const { return fStr; }
// char* c_str() { return fStr; }
//};
//
//// shorthand
//typedef hsTempString tmpstr_t;
//
//class hsTempStringF : public hsTempString
//{
//public:
// hsTempStringF(char * fmt, ...);
// void Format(char * fmt, ...);
//
// hsTempString & operator=(char * ptr) { return hsTempString::operator=(ptr); }
// hsTempString & operator=(const hsTempString & other) { return hsTempString::operator=(other); }
// hsTempString & operator=(const hsTempStringF & other) { return hsTempString::operator=(other); }
// operator char *() const { return fStr; }
// operator char *&() { return fStr; }
// operator const char *() const { return fStr; }
// operator bool() const { return fStr!=nil;}
// char * operator *() const { return fStr; }
//};
//////////////////////////////////////////////////////////////////////////////
template <class T> class hsDynamicArray {
private:
int32_t fCount;
T* fArray;
hsDynamicArray<T>& operator=(const hsDynamicArray<T>&); // don't allow assignment
public:
enum { kMissingIndex = -1 };
hsDynamicArray(int32_t count = 0);
virtual ~hsDynamicArray();
int32_t GetCount() const { return fCount; }
hsBool IsEmpty() const { return fCount == 0; }
const T& Get(int32_t index) const;
int32_t Get(int32_t index, int32_t count, T data[]) const;
int32_t Find(const T&) const; // returns kMissingIndex if not found
void SetCount(int32_t count);
T& operator[]( int32_t index );
int32_t Append(const T&);
int32_t InsertAtIndex(uint32_t index, const T& obj);
int32_t Push(const T&);
int32_t Pop(T*);
void Remove(int32_t);
void Reset(); // clears out everything
T* AcquireArray() { return fArray; }
T* DetachArray() { T* t = fArray; fCount = 0; fArray = nil; return t; }
void ReleaseArray(T*) {}
hsDynamicArray<T>* Copy(hsDynamicArray<T>* dst = nil) const;
T* ForEach(bool (*proc)(T&));
T* ForEach(bool (*proc)(T&, void* p1), void* p1);
T* ForEach(bool (*proc)(T&, void* p1, void* p2), void* p1, void* p2);
};
// Use this for block of memory allocated with HSMemory::New()
template <class T> class hsDynamicArrayAccess {
T* fArray;
hsDynamicArray<T> *fArrayObj;
hsDynamicArrayAccess<T>& operator=(const hsDynamicArrayAccess<T>&);
public:
hsDynamicArrayAccess(hsDynamicArray<T> *array) : fArrayObj(array) { fArray = array->AcquireArray();}
~hsDynamicArrayAccess() { fArrayObj->ReleaseArray(fArray); }
operator T*() const { return fArray; }
T* operator->() const { return fArray; }
};
template <class T>
hsDynamicArray<T>::hsDynamicArray(int32_t count)
{
fCount = count;
fArray = nil;
if (count)
fArray = new T[ count ];
}
template <class T>
hsDynamicArray<T>::~hsDynamicArray()
{
this->Reset();
}
template <class T>
void hsDynamicArray<T>::SetCount(int32_t count)
{
if (fCount != count)
{ if (count == 0)
this->Reset();
else
{ T* newArray = new T[count];
if (fArray)
{ int copyCount = hsMinimum(count, fCount);
for (int i = 0; i < copyCount; i++)
newArray[i] = fArray[i];
delete[] fArray;
}
fCount = count;
fArray = newArray;
}
}
}
template <class T> T& hsDynamicArray<T>::operator[]( int32_t index )
{
hsDebugCode(hsThrowIfBadParam((uint32_t)index >= (uint32_t)fCount);)
return fArray[index];
}
template <class T> const T& hsDynamicArray<T>::Get( int32_t index ) const
{
hsDebugCode(hsThrowIfBadParam((uint32_t)index >= (uint32_t)fCount);)
return fArray[index];
}
template <class T>
int32_t hsDynamicArray<T>::Get(int32_t index, int32_t count, T data[]) const
{
if (count > 0)
{ hsThrowIfNilParam(data);
hsThrowIfBadParam((uint32_t)index >= fCount);
if (index + count > fCount)
count = fCount - index;
for (int i = 0; i < count; i++)
data[i] = fArray[i + index];
}
return count;
}
template <class T>
int32_t hsDynamicArray<T>::Find(const T& obj) const
{
for (int i = 0; i < fCount; i++)
if (fArray[i] == obj)
return i;
return kMissingIndex;
}
template <class T>
void hsDynamicArray<T>::Remove(int32_t index)
{
hsThrowIfBadParam((uint32_t)index >= (uint32_t)fCount);
T rVal = fArray[index];
if (--fCount > 0)
{
int i;
T* newList = new T[fCount];
for(i = 0 ; i < index;i++)
newList[i] = fArray[i];
for (i = index; i < fCount; i++)
newList[i] = fArray[i + 1];
delete [] fArray;
fArray = newList;
}
else
{ delete[] fArray;
fArray = nil;
}
}
template <class T>
int32_t hsDynamicArray<T>::Pop(T *obj)
{
hsThrowIfBadParam(this->IsEmpty());
*obj = fArray[0];
Remove(0);
return fCount;
}
template <class T>
int32_t hsDynamicArray<T>::Push(const T& obj)
{
if (fArray)
{
T* newList = new T[fCount+1];
for(int i = 0 ; i < fCount; i++)
newList[i+1] = fArray[i];
newList[0] = obj;
delete [] fArray;
fArray = newList;
}
else
{ hsAssert(fCount == 0, "mismatch");
fArray = new T[1];
fArray[0] = obj;
}
return ++fCount;
}
template <class T>
int32_t hsDynamicArray<T>::Append(const T& obj)
{
if (fArray)
{ T* newList = new T[fCount + 1];
for (int i = 0; i < fCount; i++)
newList[i] = fArray[i];
newList[fCount] = obj;
delete [] fArray;
fArray = newList;
}
else
{ hsAssert(fCount == 0, "mismatch");
fArray = new T[1];
fArray[0] = obj;
}
return ++fCount;
}
template <class T>
int32_t hsDynamicArray<T>::InsertAtIndex(uint32_t index, const T& obj)
{
if (fArray)
{
hsAssert(uint32_t(fCount) >= index, "Index too large for array");
T* newList = new T[fCount + 1];
unsigned i;
for ( i = 0; i < index; i++)
newList[i] = fArray[i];
newList[index] = obj;
for ( i = index; i < uint32_t(fCount); i++)
newList[i+1] = fArray[i];
delete [] fArray;
fArray = newList;
}
else
{
hsAssert(fCount == 0, "mismatch");
hsAssert(index ==0,"Can't insert at non zero index in empty array");
fArray = new T[1];
fArray[0] = obj;
}
return ++fCount;
}
template <class T> void hsDynamicArray<T>::Reset()
{
if (fArray)
{ delete[] fArray;
fArray = nil;
fCount = 0;
}
}
template <class T>
hsDynamicArray<T>* hsDynamicArray<T>::Copy(hsDynamicArray<T>* dst) const
{
if (dst == nil)
dst = new hsDynamicArray<T>;
else
dst->Reset();
dst->SetCount(this->fCount);
for (int i = 0; i < this->fCount; i++)
dst->fArray[i] = this->fArray[i];
return dst;
}
template <class T> T* hsDynamicArray<T>::ForEach(bool (*proc)(T&))
{
for (int i = 0; i < fCount; i++)
if (proc(fArray[i]))
return &fArray[i];
return nil;
}
template <class T> T* hsDynamicArray<T>::ForEach(bool (*proc)(T&, void* p1), void * p1)
{
for (int i = 0; i < fCount; i++)
if (proc(fArray[i], p1))
return &fArray[i];
return nil;
}
template <class T> T* hsDynamicArray<T>::ForEach(bool (*proc)(T&, void* p1, void* p2), void *p1, void *p2)
{
for (int i = 0; i < fCount; i++)
if (proc(fArray[i], p1, p2))
return &fArray[i];
return nil;
}
////////////////////////////////////////////////////////////////////////////////
class hsTArrayBase
{
protected:
uint16_t fUseCount;
uint16_t fTotalCount;
void GrowArraySize(uint16_t nSize);
#ifdef HS_DEBUGTARRAY
hsTArrayBase();
virtual char *GetTypeName();
virtual int GetSizeOf();
hsDlistNode *self;
friend void TArrayStats();
virtual ~hsTArrayBase();
#else
hsTArrayBase():fUseCount(0), fTotalCount(0){}
#endif
public:
uint16_t GetNumAlloc() const { return fTotalCount; }
};
template <class T> void hsTArray_CopyForward(const T src[], T dst[], int count);
template <class T> class hsTArray : public hsTArrayBase
{
T* fArray;
inline void IncCount(int index, int count);
inline void DecCount(int index, int count);
#ifdef HS_DEBUGGING
#define hsTArray_ValidateCount(count) hsAssert(((count) >= 0)&&((count) <= 0xffffL), "bad count")
#define hsTArray_ValidateIndex(index) hsAssert(unsigned(index) < fUseCount, "bad index")
#define hsTArray_ValidateInsertIndex(index) hsAssert(unsigned(index) <= fUseCount, "bad index")
#define hsTArray_Validate(condition) hsAssert(condition, "oops")
#ifdef HS_DEBUGTARRAY
virtual int GetSizeOf() { return sizeof(T); }
#endif
#else
#define hsTArray_ValidateCount(count)
#define hsTArray_ValidateIndex(index)
#define hsTArray_ValidateInsertIndex(index)
#define hsTArray_Validate(condition)
#endif
public:
hsTArray() : fArray(nil) {}
inline hsTArray(int count);
inline hsTArray(const hsTArray<T>& src);
~hsTArray() { if (fArray) delete[] fArray;
}
inline void Expand(int NewTotal);
inline hsTArray<T>& operator=(const hsTArray<T>& src);
bool operator==(const hsTArray<T>& src) const; // checks sizes and contents
// Swaps the internal data (including the fArray POINTER) with the data from the array given
void Swap( hsTArray<T>& src );
void Set(int index, const T& item) { hsTArray_ValidateIndex(index); fArray[index]=item; }
const T& Get(int index) const { hsTArray_ValidateIndex(index); return fArray[index]; }
T& operator[](int index) const { hsTArray_ValidateIndex(index); return fArray[index]; }
T* FirstIter() { return &fArray[0]; }
T* StopIter() { return &fArray[fUseCount]; }
int Count() const { return fUseCount; }
int GetCount() const { return fUseCount; }
inline void SetCount(int count);
inline void SetCountAndZero(int count); // does block clear, don't use for types with vtbl
inline void ExpandAndZero(int count); // Same as set count and zero except won't decrease
// usecount
inline void Reset();
T* Insert(int index)
{
hsTArray_ValidateInsertIndex(index);
this->IncCount(index, 1);
return &fArray[index];
}
void Insert(int index, const T& item)
{
hsTArray_ValidateInsertIndex(index);
this->IncCount(index, 1);
fArray[index] = item;
}
void Insert(int index, int count, T item[])
{
hsTArray_ValidateCount(count);
if (count > 0)
{ hsTArray_ValidateInsertIndex(index);
this->IncCount(index, count);
hsTArray_CopyForward(item, &fArray[index], count);
}
}
// This guy is a duplicate for compatibility with the older hsDynamicArray<>
void InsertAtIndex(int index, const T& item) { this->Insert(index, item); }
void Remove(int index)
{
hsTArray_ValidateIndex(index);
this->DecCount(index, 1);
}
void Remove(int index, int count)
{
hsTArray_ValidateCount(count);
hsTArray_ValidateIndex(index);
hsTArray_ValidateIndex(index + count - 1);
this->DecCount(index, count);
}
hsBool RemoveItem(const T& item);
T* Push()
{
this->IncCount(fUseCount, 1);
return &fArray[fUseCount - 1];
}
void Push(const T& item)
{
this->IncCount(fUseCount, 1);
fArray[fUseCount - 1] = item;
}
void Append(const T& item)
{
this->IncCount(fUseCount, 1);
fArray[fUseCount - 1] = item;
}
inline T Pop();
inline const T& Peek() const;
enum {
kMissingIndex = -1
};
int Find(const T& item) const; // returns kMissingIndex if not found
inline T* ForEach(hsBool (*proc)(T&));
inline T* ForEach(hsBool (*proc)(T&, void* p1), void* p1);
inline T* ForEach(hsBool (*proc)(T&, void* p1, void* p2), void* p1, void* p2);
T* DetachArray()
{
T* array = fArray;
fUseCount = fTotalCount = 0;
fArray = nil;
return array;
}
T* AcquireArray() { return fArray; }
};
////////////// Public hsTArray methods
template <class T> hsTArray<T>::hsTArray(int count) : fArray(nil)
{
hsTArray_ValidateCount(count);
fUseCount = fTotalCount = count;
if (count > 0)
fArray = new T[count];
}
template <class T> hsTArray<T>::hsTArray(const hsTArray<T>& src) : fArray(nil)
{
int count = src.Count();
fUseCount = fTotalCount = count;
if (count > 0)
{
fArray = new T[count];
hsTArray_CopyForward(src.fArray, fArray, count);
}
}
template <class T> hsTArray<T>& hsTArray<T>::operator=(const hsTArray<T>& src)
{
if (this->Count() != src.Count())
this->SetCount(src.Count());
hsTArray_CopyForward(src.fArray, fArray, src.Count());
return *this;
}
// checks sizes and contents
template <class T>
bool hsTArray<T>::operator==(const hsTArray<T>& src) const
{
if (&src==this)
return true; // it's me
if (GetCount() != src.GetCount())
return false; // different sizes
int i;
for(i=0;i<GetCount();i++)
if (Get(i) != src[i])
return false; // different contents
return true; // the same
}
//// Swap ////////////////////////////////////////////////////////////////////
// Added 5.2.2001 mcn - Given another hsTArray of the same type, "swaps" the
// data stored in both. Basically we're literally swapping the fArray pointers
// around, plus the use counts and such.
template <class T> void hsTArray<T>::Swap( hsTArray<T>& src )
{
uint16_t use, tot;
T *array;
use = fUseCount;
tot = fTotalCount;
array = fArray;
fUseCount = src.fUseCount;
fTotalCount = src.fTotalCount;
fArray = src.fArray;
src.fUseCount = use;
src.fTotalCount = tot;
src.fArray = array;
}
template <class T> void hsTArray<T>::SetCountAndZero(int count)
{
if( fTotalCount <= count )
{
int n = fTotalCount;
Expand(count);
}
int i;
for( i = 0; i < fTotalCount; i++ )
fArray[i] = nil;
fUseCount = count;
}
template <class T> void hsTArray<T>::ExpandAndZero(int count)
{
if( fTotalCount <= count )
{
int n = fTotalCount;
Expand(count);
int i;
for( i = n; i < count; i++ )
fArray[i] = nil;
}
if( fUseCount < count )
fUseCount = count;
}
template <class T> void hsTArray<T>::SetCount(int count)
{
hsTArray_ValidateCount(count);
if (count > fTotalCount)
{
if (fArray)
delete[] fArray;
fArray = new T[count];
fUseCount = fTotalCount = count;
}
fUseCount = count;
}
template <class T> void hsTArray<T>::Expand(int NewCount) // New Count is Absolute not additional
{
hsTArray_ValidateCount(NewCount);
if (NewCount > fTotalCount) // This is Expand not Shrink
{
T* newArray = new T[NewCount];
if (fArray != nil)
{ hsTArray_CopyForward(fArray, newArray, fUseCount);
// hsTArray_CopyForward(&fArray[index], &newArray[index + count], fUseCount - index);
delete[] fArray;
}
fArray = newArray;
fTotalCount = NewCount;
}
}
template <class T> void hsTArray<T>::Reset()
{
if (fArray)
{
delete[] fArray;
fArray = nil;
fUseCount = fTotalCount = 0;
}
}
template <class T> T hsTArray<T>::Pop()
{
hsTArray_Validate(fUseCount > 0);
fUseCount -= 1;
return fArray[fUseCount];
}
template <class T> const T& hsTArray<T>::Peek() const
{
hsTArray_Validate(fUseCount > 0);
return fArray[fUseCount-1];
}
template <class T> int hsTArray<T>::Find(const T& item) const
{
for (int i = 0; i < fUseCount; i++)
if (fArray[i] == item)
return i;
return kMissingIndex;
}
template <class T> hsBool hsTArray<T>::RemoveItem(const T& item)
{
for (int i = 0; i < fUseCount; i++)
if (fArray[i] == item)
{ this->DecCount(i, 1);
return true;
}
return false;
}
////////// These are the private methods for hsTArray
template <class T> void hsTArray_CopyForward(const T src[], T dst[], int count)
{
for (int i = 0; i < count; i++)
dst[i] = src[i];
}
template <class T> void hsTArray_CopyBackward(const T src[], T dst[], int count)
{
for (int i = count - 1; i >= 0; --i)
dst[i] = src[i];
}
template <class T> void hsTArray<T>::IncCount(int index, int count)
{
int newCount = fUseCount + count;
if (newCount > fTotalCount)
{ if (fTotalCount == 0)
fTotalCount = newCount;
GrowArraySize(newCount); // Sets new fTotalCount
T* newArray = new T[fTotalCount];
if (fArray != nil)
{ hsTArray_CopyForward(fArray, newArray, index);
hsTArray_CopyForward(&fArray[index], &newArray[index + count], fUseCount - index);
delete[] fArray;
}
fArray = newArray;
}
else
hsTArray_CopyBackward(&fArray[index], &fArray[index + count], fUseCount - index);
fUseCount = newCount;
}
template <class T> void hsTArray<T>::DecCount(int index, int count)
{
if (fUseCount == count)
this->Reset();
else
{ hsTArray_CopyForward(&fArray[index + count], &fArray[index], fUseCount - index - count);
fUseCount -= count;
}
}
template <class T> T* hsTArray<T>::ForEach(hsBool (*proc)(T&))
{
for (int i = 0; i < fUseCount; i++)
if (proc(fArray[i]))
return &fArray[i];
return nil;
}
template <class T> T* hsTArray<T>::ForEach(hsBool (*proc)(T&, void* p1), void* p1)
{
for (int i = 0; i < fUseCount; i++)
if (proc(fArray[i], p1))
return &fArray[i];
return nil;
}
template <class T> T* hsTArray<T>::ForEach(hsBool (*proc)(T&, void* p1, void* p2), void* p1, void* p2)
{
for (int i = 0; i < fUseCount; i++)
if (proc(fArray[i], p1, p2))
return &fArray[i];
return nil;
}
////////////////////////////////////////////////////////////////////////////////////////////////
//
// hsTArray's big brother. Only to be used when expecting more than 64K of elements. The
// only difference between hsTArray and hsLargeArray is LargeArray uses 32 bit counters,
// vs 16 bit counters for hsTArray.
class hsLargeArrayBase
{
protected:
uint32_t fUseCount;
uint32_t fTotalCount;
void GrowArraySize(uint32_t nSize);
#ifdef HS_DEBUGTARRAY
hsLargeArrayBase();
virtual char *GetTypeName();
virtual int GetSizeOf();
hsDlistNode *self;
friend void LargeArrayStats();
virtual ~hsLargeArrayBase();
#else
hsLargeArrayBase():fUseCount(0), fTotalCount(0){}
#endif
public:
uint32_t GetNumAlloc() const { return fTotalCount; }
};
template <class T> class hsLargeArray : public hsLargeArrayBase
{
T* fArray;
inline void IncCount(int index, int count);
inline void DecCount(int index, int count);
#ifdef HS_DEBUGGING
#define hsLargeArray_ValidateCount(count) hsAssert((count) >= 0, "bad count")
#define hsLargeArray_ValidateIndex(index) hsAssert(unsigned(index) < fUseCount, "bad index")
#define hsLargeArray_ValidateInsertIndex(index) hsAssert(unsigned(index) <= fUseCount, "bad index")
#define hsLargeArray_Validate(condition) hsAssert(condition, "oops")
#ifdef HS_DEBUGTARRAY
virtual int GetSizeOf() { return sizeof(T); }
#endif
#else
#define hsLargeArray_ValidateCount(count)
#define hsLargeArray_ValidateIndex(index)
#define hsLargeArray_ValidateInsertIndex(index)
#define hsLargeArray_Validate(condition)
#endif
public:
hsLargeArray() : fArray(nil) {}
inline hsLargeArray(int count);
inline hsLargeArray(const hsLargeArray<T>& src);
~hsLargeArray() { if (fArray) delete[] fArray;
}
inline void Expand(int NewTotal);
inline hsLargeArray<T>& operator=(const hsLargeArray<T>& src);
// Swaps the internal data (including the fArray POINTER) with the data from the array given
void Swap( hsLargeArray<T>& src );
void Set(int index, const T& item) { hsLargeArray_ValidateIndex(index); fArray[index]=item; }
const T& Get(int index) const { hsLargeArray_ValidateIndex(index); return fArray[index]; }
T& operator[](int index) const { hsLargeArray_ValidateIndex(index); return fArray[index]; }
T* FirstIter() { return &fArray[0]; }
T* StopIter() { return &fArray[fUseCount]; }
int Count() const { return fUseCount; }
int GetCount() const { return fUseCount; }
inline void SetCount(int count);
inline void SetCountAndZero(int count); // does block clear, don't use for types with vtbl
inline void ExpandAndZero(int count); // Same as set count and zero except won't decrease
// usecount
inline void Reset();
T* Insert(int index)
{
hsLargeArray_ValidateInsertIndex(index);
this->IncCount(index, 1);
return &fArray[index];
}
void Insert(int index, const T& item)
{
hsLargeArray_ValidateInsertIndex(index);
this->IncCount(index, 1);
fArray[index] = item;
}
void Insert(int index, int count, T item[])
{
hsLargeArray_ValidateCount(count);
if (count > 0)
{ hsLargeArray_ValidateInsertIndex(index);
this->IncCount(index, count);
hsLargeArray_CopyForward(item, &fArray[index], count);
}
}
// This guy is a duplicate for compatibility with the older hsDynamicArray<>
void InsertAtIndex(int index, const T& item) { this->Insert(index, item); }
void Remove(int index)
{
hsLargeArray_ValidateIndex(index);
this->DecCount(index, 1);
}
void Remove(int index, int count)
{
hsLargeArray_ValidateCount(count);
hsLargeArray_ValidateIndex(index);
hsLargeArray_ValidateIndex(index + count - 1);
this->DecCount(index, count);
}
hsBool RemoveItem(const T& item);
T* Push()
{
this->IncCount(fUseCount, 1);
return &fArray[fUseCount - 1];
}
void Push(const T& item)
{
this->IncCount(fUseCount, 1);
fArray[fUseCount - 1] = item;
}
void Append(const T& item)
{
this->IncCount(fUseCount, 1);
fArray[fUseCount - 1] = item;
}
inline T Pop();
inline const T& Peek() const;
enum {
kMissingIndex = -1
};
int Find(const T& item) const; // returns kMissingIndex if not found
inline T* ForEach(hsBool (*proc)(T&));
inline T* ForEach(hsBool (*proc)(T&, void* p1), void* p1);
inline T* ForEach(hsBool (*proc)(T&, void* p1, void* p2), void* p1, void* p2);
T* DetachArray()
{
T* array = fArray;
fUseCount = fTotalCount = 0;
fArray = nil;
return array;
}
T* AcquireArray() { return fArray; }
};
////////////// Public hsLargeArray methods
template <class T> hsLargeArray<T>::hsLargeArray(int count) : fArray(nil)
{
hsLargeArray_ValidateCount(count);
fUseCount = fTotalCount = count;
if (count > 0)
fArray = new T[count];
}
template <class T> hsLargeArray<T>::hsLargeArray(const hsLargeArray<T>& src) : fArray(nil)
{
int count = src.Count();
fUseCount = fTotalCount = count;
if (count > 0)
{
fArray = new T[count];
hsLargeArray_CopyForward(src.fArray, fArray, count);
}
}
template <class T> hsLargeArray<T>& hsLargeArray<T>::operator=(const hsLargeArray<T>& src)
{
if (this->Count() != src.Count())
this->SetCount(src.Count());
hsLargeArray_CopyForward(src.fArray, fArray, src.Count());
return *this;
}
template <class T> void hsLargeArray<T>::Swap( hsLargeArray<T>& src )
{
uint32_t use, tot;
T *array;
use = fUseCount;
tot = fTotalCount;
array = fArray;
fUseCount = src.fUseCount;
fTotalCount = src.fTotalCount;
fArray = src.fArray;
src.fUseCount = use;
src.fTotalCount = tot;
src.fArray = array;
}
template <class T> void hsLargeArray<T>::SetCountAndZero(int count)
{
if( fTotalCount <= count )
{
int n = fTotalCount;
Expand(count);
}
HSMemory::Clear(fArray, fTotalCount * sizeof( T ));
fUseCount = count;
}
template <class T> void hsLargeArray<T>::ExpandAndZero(int count)
{
if( fTotalCount <= count )
{
int n = fTotalCount;
Expand(count);
HSMemory::Clear(fArray+n, (count - n) * sizeof( T ));
}
if( fUseCount < count )
fUseCount = count;
}
template <class T> void hsLargeArray<T>::SetCount(int count)
{
hsLargeArray_ValidateCount(count);
if (count > fTotalCount)
{
if (fArray)
delete[] fArray;
fArray = new T[count];
fUseCount = fTotalCount = count;
}
fUseCount = count;
}
template <class T> void hsLargeArray<T>::Expand(int NewCount) // New Count is Absolute not additional
{
hsLargeArray_ValidateCount(NewCount);
if (NewCount > fTotalCount) // This is Expand not Shrink
{
T* newArray = new T[NewCount];
if (fArray != nil)
{ hsLargeArray_CopyForward(fArray, newArray, fUseCount);
// hsLargeArray_CopyForward(&fArray[index], &newArray[index + count], fUseCount - index);
delete[] fArray;
}
fArray = newArray;
fTotalCount = NewCount;
}
}
template <class T> void hsLargeArray<T>::Reset()
{
if (fArray)
{
delete[] fArray;
fArray = nil;
fUseCount = fTotalCount = 0;
}
}
template <class T> T hsLargeArray<T>::Pop()
{
hsLargeArray_Validate(fUseCount > 0);
fUseCount -= 1;
return fArray[fUseCount];
}
template <class T> const T& hsLargeArray<T>::Peek() const
{
hsLargeArray_Validate(fUseCount > 0);
return fArray[fUseCount-1];
}
template <class T> int hsLargeArray<T>::Find(const T& item) const
{
for (int i = 0; i < fUseCount; i++)
if (fArray[i] == item)
return i;
return kMissingIndex;
}
template <class T> hsBool hsLargeArray<T>::RemoveItem(const T& item)
{
for (int i = 0; i < fUseCount; i++)
if (fArray[i] == item)
{ this->DecCount(i, 1);
return true;
}
return false;
}
////////// These are the private methods for hsLargeArray
template <class T> void hsLargeArray_CopyForward(const T src[], T dst[], int count)
{
for (int i = 0; i < count; i++)
dst[i] = src[i];
}
template <class T> void hsLargeArray_CopyBackward(const T src[], T dst[], int count)
{
for (int i = count - 1; i >= 0; --i)
dst[i] = src[i];
}
template <class T> void hsLargeArray<T>::IncCount(int index, int count)
{
int newCount = fUseCount + count;
if (newCount > fTotalCount)
{ if (fTotalCount == 0)
fTotalCount = newCount;
GrowArraySize(newCount); // Sets new fTotalCount
T* newArray = new T[fTotalCount];
if (fArray != nil)
{ hsLargeArray_CopyForward(fArray, newArray, index);
hsLargeArray_CopyForward(&fArray[index], &newArray[index + count], fUseCount - index);
delete[] fArray;
}
fArray = newArray;
}
else
hsLargeArray_CopyBackward(&fArray[index], &fArray[index + count], fUseCount - index);
fUseCount = newCount;
}
template <class T> void hsLargeArray<T>::DecCount(int index, int count)
{
if (fUseCount == count)
this->Reset();
else
{ hsLargeArray_CopyForward(&fArray[index + count], &fArray[index], fUseCount - index - count);
fUseCount -= count;
}
}
template <class T> T* hsLargeArray<T>::ForEach(hsBool (*proc)(T&))
{
for (int i = 0; i < fUseCount; i++)
if (proc(fArray[i]))
return &fArray[i];
return nil;
}
template <class T> T* hsLargeArray<T>::ForEach(hsBool (*proc)(T&, void* p1), void* p1)
{
for (int i = 0; i < fUseCount; i++)
if (proc(fArray[i], p1))
return &fArray[i];
return nil;
}
template <class T> T* hsLargeArray<T>::ForEach(hsBool (*proc)(T&, void* p1, void* p2), void* p1, void* p2)
{
for (int i = 0; i < fUseCount; i++)
if (proc(fArray[i], p1, p2))
return &fArray[i];
return nil;
}
#endif