You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

758 lines
21 KiB

/*==LICENSE==*
CyanWorlds.com Engine - MMOG client, server and tools
Copyright (C) 2011 Cyan Worlds, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
You can contact Cyan Worlds, Inc. by email legal@cyan.com
or by snail mail at:
Cyan Worlds, Inc.
14617 N Newport Hwy
Mead, WA 99021
*==LICENSE==*/
#include "HeadSpin.h"
// BIPEDKILLER
///////////
//
// INCLUDES
//
///////////
// theirs
#include <windowsx.h>
#include "max.h"
#include "resource.h"
#include "CS/bipexp.h"
#include "decomp.h"
#pragma warning(disable: 4786) // disable warnings about excessive STL symbol name length
#include <map>
#include <vector>
#include "hsStlSortUtils.h"
// ours
#include "plComponent.h"
#include "plComponentReg.h"
#include "plMiscComponents.h"
#include "../MaxMain/plMaxNodeBase.h"
#include "../plTransform/hsAffineParts.h"
#include "hsMatrix44.h"
//////////////
//
// LOCAL TYPES
//
//////////////
// NODETMINFO
// A local handy thing to remember a matrix and the time we sampled it
struct nodeTMInfo
{
TimeValue fTime;
Matrix3 fMat3;
};
// PLSAMPLEVEC
// A vector of matrix samples
typedef std::vector<nodeTMInfo *> plSampleVec;
// PLSAMPLEVECMAP
// A map relating bone names to plSampleVecs
typedef std::map<char *, plSampleVec *, stringSorter> plSampleVecMap;
/////////////
//
// PROTOTYPES
//
/////////////
void ProcessNodeRecurse(INode *node, INode *parent, Interface *theInterface);
void ProcessBipedNodeRecurse(INode *bipNode, INode *newParent, Interface *theInterface);
void ProcessNonBipedNodeRecurse(INode *node, INode *parent, Interface *theInterface);
int LimitTransform(INode* node, Matrix3* nodeTM);
void GetParts(Int32 i, std::vector<nodeTMInfo *>& mat3Array, hsAffineParts* parts);
Quat GetRotKey(Int32 i, std::vector<nodeTMInfo *>& mat3Array, hsAffineParts* parts);
Point3 GetPosKey(Int32 i, std::vector<nodeTMInfo *>& mat3Array, hsAffineParts* parts);
ScaleValue GetScaleKey(Int32 i, std::vector<nodeTMInfo *>& mat3Array, hsAffineParts* parts);
Quat MakeRotKey(INode *node, INode *parent, TimeValue t);
Point3 MakePosKey(INode *node, INode *parent, TimeValue t);
ScaleValue MakeScaleKey(INode *node, INode *parent, TimeValue t);
AffineParts GetLocalNodeParts(INode *node, INode *parent, TimeValue t);
bool ExportableAnimationController(INode* node);
bool HasBipController(INode* node);
Quat GetRotKey(Int32 i, std::vector<nodeTMInfo *>& mat3Array);
plSampleVec * SampleNodeMotion(INode* node, INode* parent, int sampleRate, Interface *theInterface);
plSampleVec * SampleNodeMotion(INode * node, INode* parent, int sampleRate, TimeValue start, TimeValue end);
void ReapplyAnimation(INode *node, plSampleVec *samples);
void FreeMotionSamples(plSampleVec *samples);
/////////////////
//
// IMPLEMENTATION
//
/////////////////
// REMOVEBIPED
void RemoveBiped(INode *bipRoot, Interface *theInterface)
{
SuspendAnimate();
AnimateOn();
// remember Max's default controllers (for the user)
ClassDesc* defaultRotCtrl=GetDefaultController(CTRL_ROTATION_CLASS_ID);
ClassDesc* defaultPosCtrl=GetDefaultController(CTRL_POSITION_CLASS_ID);
ClassDesc* defaultScaleCtrl=GetDefaultController(CTRL_SCALE_CLASS_ID);
// change default controllers to linear to create linear controllers
// since we have no tan info
DllDir* dllDir=&theInterface->GetDllDir();
ClassDirectory* classDir=&dllDir->ClassDir();
ClassDesc* rotCtrl = classDir->FindClass( SClass_ID(CTRL_ROTATION_CLASS_ID),
Class_ID(TCBINTERP_ROTATION_CLASS_ID,0)); // was Class_ID(LININTERP_ROTATION_CLASS_ID,0));
ClassDesc* posCtrl = classDir->FindClass( SClass_ID(CTRL_POSITION_CLASS_ID),
Class_ID(LININTERP_POSITION_CLASS_ID, 0));
ClassDesc* scaleCtrl = classDir->FindClass( SClass_ID(CTRL_SCALE_CLASS_ID),
Class_ID(LININTERP_SCALE_CLASS_ID, 0));
SetDefaultController(CTRL_ROTATION_CLASS_ID, rotCtrl);
SetDefaultController(CTRL_POSITION_CLASS_ID, posCtrl);
SetDefaultController(CTRL_SCALE_CLASS_ID, scaleCtrl);
ProcessNodeRecurse(bipRoot, nil, theInterface);
//deinit
ResumeAnimate();
// remember Max's default controllers (for the user)
SetDefaultController(CTRL_ROTATION_CLASS_ID, defaultRotCtrl);
SetDefaultController(CTRL_POSITION_CLASS_ID, defaultPosCtrl);
SetDefaultController(CTRL_SCALE_CLASS_ID, defaultScaleCtrl);
}
// PROCESSNODERECURSE
void ProcessNodeRecurse(INode *node, INode *parent, Interface *theInterface)
{
if(HasBipController(node))
{
ProcessBipedNodeRecurse(node, parent, theInterface);
} else {
ProcessNonBipedNodeRecurse(node, parent, theInterface);
}
}
// PROCESSBIPNODERECURSE
// When we find a Biped-controlled node in our hierarchy, we need to find one non-biped
// child and promote it to the place of the biped node in the hierarchy. The siblings
// of the promoted node will become its children, as will the original children from the
// biped node.
void ProcessBipedNodeRecurse(INode *bipNode, INode *parent, Interface *theInterface)
{
int numChildren = bipNode->NumberOfChildren();
char *bipName = bipNode ? bipNode->GetName() : nil;
INode *replacement = nil;
for (int i = 0; i < numChildren; i++)
{
INode *child = bipNode->GetChildNode(i);
char *childName = child ? child->GetName() : nil;
if( ! HasBipController(child) )
{
replacement = child; // this child is going to be our replacement for this bipnode
// sample the animation (into global space)
plSampleVec *samples = SampleNodeMotion(replacement, bipNode, 1, theInterface);
// detach from the parent (this blows away the animation)
replacement->Detach(0);
// attach the node to the biped's parent.
parent->AttachChild(replacement);
ReapplyAnimation(child, samples);
FreeMotionSamples(samples);
// we only need one replacement for the bip node
break;
}
}
if(replacement)
{
// reparent the siblings to the newly promoted replacement node
numChildren = bipNode->NumberOfChildren();
for (i = 0; i < numChildren; i++)
{
INode *child = bipNode->GetChildNode(i);
if( HasBipController(child) )
{
ProcessBipedNodeRecurse(child, replacement, theInterface);
} else {
child->Detach(0); // remove the (non-bip) child from the bip node
replacement->AttachChild(child); // attach it to the non-bip parent
ProcessNonBipedNodeRecurse(child, replacement, theInterface);
}
}
} else {
// this is an error condition: we've got a bip node that has no non-bip child for us to promote
char buf[256];
sprintf(buf, "Couldn't find non-bip node to transfer motion to for bip node %s\n", bipNode->GetName());
hsStatusMessage(buf);
}
}
// PROCESSNONBIPEDNODERECURSE
// Sample motion for a hierarchy that does not have any Biped controllers in it.
void ProcessNonBipedNodeRecurse(INode *node, INode *parent, Interface *theInterface)
{
if( ! ExportableAnimationController(node) )
{
plSampleVec *samples = SampleNodeMotion(node, parent, 2, theInterface);
ReapplyAnimation(node, samples);
FreeMotionSamples(samples);
}
int numChildren = node->NumberOfChildren();
for (int i = 0; i < numChildren; i++)
{
INode *child = node->GetChildNode(i);
ProcessNodeRecurse(child, node, theInterface);
}
}
// ADJUSTROTKEYS
void AdjustRotKeys(INode *node)
{
Control *controller = node->GetTMController();
Control *rotControl = controller->GetRotationController();
IKeyControl *rotKeyCont = GetKeyControlInterface(rotControl);
int numKeys = rotKeyCont->GetNumKeys();
for(int i = 0; i < numKeys; i++)
{
ITCBKey key;
rotKeyCont->GetKey(i, &key);
key.cont = 0;
rotKeyCont->SetKey(i, &key);
}
}
#define boolTrue = (0 == 0);
#define boolFalse = (0 == 1);
// *** todo: generalize this for rotation keys as well.
int CompareKeys(ILinPoint3Key &a, ILinPoint3Key &b)
{
int result = a.val.Equals(b.val, .001);
#if 0
hsStatusMessageF("COMPAREKEYS(point): (%f %f %f) vs (%f, %f, %f) = %s\n", a.val.x, a.val.y, a.val.z, b.val.x, b.val.y, b.val.z, result ? "yes" : "no");
#endif
return result;
}
template<class T>
void ReduceKeys(INode *node, IKeyControl *keyCont)
{
keyCont->SortKeys(); // ensure the keys are sorted by time
int to; // the next key we're setting
int from; // the next key we're examining
int origNumKeys = keyCont->GetNumKeys();
int finalNumKeys = origNumKeys;
for (to = 1, from = 1; from < origNumKeys - 1; to++, from++)
{
T prevKey, curKey, nextKey;
keyCont->GetKey(from - 1, &prevKey);
keyCont->GetKey(from, &curKey);
keyCont->GetKey(from + 1, &nextKey);
if (CompareKeys(curKey, prevKey) && CompareKeys(curKey, nextKey))
finalNumKeys--; // skip it
else
keyCont->SetKey(to, &curKey); // copy current key
}
// copy the last one without peeking ahead
T lastKey;
keyCont->GetKey(from, &lastKey);
keyCont->SetKey(to, &lastKey);
keyCont->SetNumKeys(finalNumKeys);
keyCont->SortKeys();
}
void EliminateScaleKeys(INode *node, IKeyControl *keyCont)
{
int numKeys = keyCont->GetNumKeys();
ILinScaleKey last;
keyCont->GetKey(numKeys - 1, &last);
keyCont->SetKey(1, &last); // move the last to the second
keyCont->SetNumKeys(2);
}
// REAPPLYANIMATION
// Now that we've reparented a node within the hierarchy, re-apply all its animation.
void ReapplyAnimation(INode *node, plSampleVec *samples)
{
Control *controller = node->GetTMController();
Control *rotControl = NewDefaultRotationController(); // we set the default rotation controller type above in RemoveBiped()
Control *posControl = NewDefaultPositionController(); // '' ''
Control *scaleControl = NewDefaultScaleController(); // '' ''
controller->SetRotationController(rotControl);
controller->SetPositionController(posControl);
controller->SetScaleController(scaleControl);
for(int i = 0; i < samples->size(); i++)
{
nodeTMInfo *info = (*samples)[i];
Matrix3 m = info->fMat3;
TimeValue t = info->fTime;
#if 1
node->SetNodeTM(t, m);
#else
AffineParts parts;
INode *parent = node->GetParentNode();
Matrix3 parentTM = parent->GetNodeTM(t);
Matrix3 invParentTM = Inverse(parentTM);
m *= invParentTM;
decomp_affine(m, &parts);
Quat q(parts.q.x, parts.q.y, parts.q.z, parts.q.w);
Point3 p(parts.t.x, parts.t.y, parts.t.z);
rotControl->SetValue(t, q);
posControl->SetValue(t, p);
#endif
}
IKeyControl *posKeyCont = GetKeyControlInterface(posControl);
IKeyControl *scaleKeyCont = GetKeyControlInterface(scaleControl);
ReduceKeys<ILinPoint3Key>(node, posKeyCont);
EliminateScaleKeys(node, scaleKeyCont);
// grrrr ReduceKeys<ILinScaleKey>(node, scaleKeyCont);
}
// HASBIPCONTROLLER
bool HasBipController(INode* node)
{
if (!node)
return false;
Control* c = node->GetTMController();
if (c && ((c->ClassID()== BIPSLAVE_CONTROL_CLASS_ID) ||
(c->ClassID()== BIPBODY_CONTROL_CLASS_ID) ||
(c->ClassID()== FOOTPRINT_CLASS_ID)) )
return true;
return false;
}
// EXPORTABLEANIMATIONCONTROLLER
bool ExportableAnimationController(INode* node)
{
bool result = false;
if(node)
{
Control *c = node->GetTMController();
if(c)
{
Class_ID id = c->ClassID();
if(id == Class_ID(LININTERP_ROTATION_CLASS_ID, 0)
|| id == Class_ID(PRS_CONTROL_CLASS_ID, 0)
|| id == Class_ID(LININTERP_POSITION_CLASS_ID, 0)
|| id == Class_ID(TCBINTERP_FLOAT_CLASS_ID, 0)
|| id == Class_ID(TCBINTERP_POSITION_CLASS_ID, 0)
|| id == Class_ID(TCBINTERP_ROTATION_CLASS_ID, 0)
|| id == Class_ID(TCBINTERP_POINT3_CLASS_ID, 0)
|| id == Class_ID(TCBINTERP_SCALE_CLASS_ID, 0))
{
result = true;
}
}
}
return result;
}
// SAMPLENODEMOTION
// top level function for sampling all the motion on a single node
plSampleVec * SampleNodeMotion(INode* node, INode* parent, int sampleRate, Interface *theInterface)
{
Interval interval = theInterface->GetAnimRange();
TimeValue start = interval.Start(); // in ticks
TimeValue end = interval.End();
sampleRate *= GetTicksPerFrame(); // convert sample rate to ticks
return SampleNodeMotion(node, parent, sampleRate, start, end);
}
// SAMPLENODEMOTION
// sample all the motion on a single node
// intended for use in the context of a full tree traversal
plSampleVec * SampleNodeMotion(INode * node, INode* parent, int sampleRate, TimeValue start, TimeValue end)
{
plSampleVec *result = TRACKED_NEW plSampleVec;
bool done = false;
for(int i = start; ! done; i += sampleRate)
{
if (i > end) i = end;
if (i == end) done = true;
// Get key time
TimeValue keyTime = i;
int frameNum= keyTime / GetTicksPerFrame();
// get localTM
nodeTMInfo * nti = TRACKED_NEW nodeTMInfo;
nti->fTime = keyTime;
Matrix3 localTM = node->GetNodeTM(keyTime);
nti->fMat3 = localTM;
result->push_back(nti);
}
return result;
}
// FREEMOTIONSAMPLES
void FreeMotionSamples(plSampleVec *samples)
{
int count = samples->size();
for(int i = 0; i < count; i++)
{
delete (*samples)[i];
}
delete samples;
}
// LIMITTRANSFORM
// Check if this node is marked as having a constrained transform.
// Meaning ignore part of the transform for this node and push it down to its kids.
int LimitTransform(INode* node, Matrix3* nodeTM)
{
/* NOT sure if we want to support this functionality: probably eventually.
hsBool32 noRotX=false,noRotY=false,noRotZ=false;
hsBool32 noRot=gUserPropMgr.UserPropExists(node,"BEHNoRot") || MatWrite::HasToken(node->GetName(), "norot");
if (!noRot)
{
noRotX=gUserPropMgr.UserPropExists(node,"BEHNoRotX") || MatWrite::HasToken(node->GetName(), "norotx");
noRotY=gUserPropMgr.UserPropExists(node,"BEHNoRotY") || MatWrite::HasToken(node->GetName(), "noroty");
noRotZ=gUserPropMgr.UserPropExists(node,"BEHNoRotZ") || MatWrite::HasToken(node->GetName(), "norotz");
}
hsBool32 noTransX=false,noTransY=false,noTransZ=false;
hsBool32 noTrans=gUserPropMgr.UserPropExists(node,"BEHNoTrans") || MatWrite::HasToken(node->GetName(), "notrans");
if (!noTrans)
{
noTransX=gUserPropMgr.UserPropExists(node,"BEHNoTransX") || MatWrite::HasToken(node->GetName(), "notransx");
noTransY=gUserPropMgr.UserPropExists(node,"BEHNoTransY") || MatWrite::HasToken(node->GetName(), "notransy");
noTransZ=gUserPropMgr.UserPropExists(node,"BEHNoTransZ") || MatWrite::HasToken(node->GetName(), "notransz");
}
if (noRot || noTrans ||
noRotX || noRotY || noRotZ ||
noTransX || noTransY || noTransZ)
{
Matrix3 tm(true); // identity
Quat q(*nodeTM); // matrix to quat
float eulerAng[3];
QuatToEuler(q, eulerAng); // to euler
// rotation
if (!noRot && !noRotX)
tm.RotateX(eulerAng[0]);
if (!noRot && !noRotY)
tm.RotateY(eulerAng[1]);
if (!noRot && !noRotZ)
tm.RotateZ(eulerAng[2]);
// translation
Point3 trans=nodeTM->GetTrans();
if (noTrans || noTransX)
trans.x=0;
if (noTrans || noTransY)
trans.y=0;
if (noTrans || noTransZ)
trans.z=0;
tm.Translate(trans);
// copy back
*nodeTM = tm;
return true;
}
*/
return false;
}
/*
//////////
// ARCHIVE
//////////
// Stuff we're not using but that looks kind of handy and which we might use again at some point.
/////////////////////////////////
/////////////////////////////////
/// SAMPLETREEMOTION
/// Sample motion for all of the non-bip bones in the heirarchy.
/// Need to sample the motion before rearranging the hierarchy and then
/// apply it after rearranging; hence the intermediate storage format.
// SAMPLETREEMOTION
// Sample all the (non-bip) motion in the whole tree
plSampleVecMap *SampleTreeMotion(INode* node, INode* parent, int sampleRate, Interface *theInterface)
{
Interval interval = theInterface->GetAnimRange();
TimeValue start = interval.Start(); // in ticks
TimeValue end = interval.End();
plSampleVecMap *ourMap = TRACKED_NEW plSampleVecMap();
sampleRate *= GetTicksPerFrame(); // convert sample rate to ticks
SampleTreeMotionRecurse(node, parent, sampleRate, start, end, ourMap);
return ourMap;
}
// SAMPLETREEMOTIONRECURSE
void SampleTreeMotionRecurse(INode * node, INode* parent, int sampleRate,
TimeValue start, TimeValue end, plSampleVecMap *ourMap)
{
// if it's not a bip, sample the fuck out of it
if(!HasBipController(node))
{
char *nodeName = node->GetName();
char *nameCopy = TRACKED_NEW char[strlen(nodeName) + 1];
strcpy(nameCopy, nodeName);
plSampleVec *branch = SampleNodeMotion(node, parent, sampleRate, start, end);
(*ourMap)[nameCopy] = branch;
}
// whether it's a bip or not, paw through its children
for(int i = 0; i < node->NumberOfChildren(); i++)
{
INode *child = node->GetChildNode(i);
SampleTreeMotionRecurse(child, node, sampleRate, start, end, ourMap);
}
}
// GETPARTS
void GetParts(Int32 i, std::vector<nodeTMInfo *>& mat3Array, hsAffineParts* parts)
{
hsAssert(parts, "nil parts");
// decomp matrix
gemAffineParts ap;
hsMatrix44 tXform = plMaxNodeBase::Matrix3ToMatrix44(mat3Array[i]->fMat3);
decomp_affine(tXform.fMap, &ap);
AP_SET((*parts), ap);
}
// MAKEROTKEY
Quat MakeRotKey(INode *node, INode *parent, TimeValue t)
{
AffineParts parts = GetLocalNodeParts(node, parent, t);
Quat q(parts.q.x, parts.q.y, parts.q.z, parts.q.w);
if( parts.f < 0.f )
{
// q = Quat(parts.q.x, parts.q.y, parts.q.z, -parts.q.w);
}
else
{
// q=Quat(-parts.q.x, -parts.q.y, -parts.q.z, parts.q.w);
}
return q;
}
Quat GetRotKey(Int32 i, std::vector<nodeTMInfo *>& mat3Array)
{
Matrix3 m = mat3Array[i]->fMat3;
AffineParts parts;
decomp_affine(m, &parts);
Quat q(parts.q.x, parts.q.y, parts.q.z, parts.q.w);
return q;
}
// GETROTKEY
Quat GetRotKey(Int32 i, std::vector<nodeTMInfo *>& mat3Array, hsAffineParts* parts)
{
hsAffineParts myParts;
if (!parts)
{
parts=&myParts;
GetParts(i, mat3Array, parts);
}
Quat q;
if( parts->fF < 0.f )
{
q = Quat(parts->fQ.fX, parts->fQ.fY, parts->fQ.fZ, -parts->fQ.fW); // ??? why are we inverting W?
#if 0
if( false)
{
Point3 ax;
float ang;
AngAxisFromQ(q, &ang, ax);
//ang -= hsScalarPI;
ax = -ax;
q = QFromAngAxis(ang, ax);
}
#endif
}
else
{
q=Quat(-parts->fQ.fX, -parts->fQ.fY, -parts->fQ.fZ, parts->fQ.fW);
}
return q;
}
// MAKEPOSKEY
Point3 MakePosKey(INode *node, INode *parent, TimeValue t)
{
AffineParts parts = GetLocalNodeParts(node, parent, t);
return Point3(parts.t.x, parts.t.y, parts.t.z);
}
// GETPOSKEY
Point3 GetPosKey(Int32 i, std::vector<nodeTMInfo *>& mat3Array, hsAffineParts* parts)
{
hsAffineParts myParts;
if (!parts)
{
parts=&myParts;
GetParts(i, mat3Array, parts);
}
return Point3(parts->fT.fX, parts->fT.fY, parts->fT.fZ);
}
// MAKESCALEKEY
ScaleValue MakeScaleKey(INode *node, INode *parent, TimeValue t)
{
Matrix3 m1 = node->GetNodeTM(t);
hsMatrix44 hsM = plMaxNodeBase::Matrix3ToMatrix44(m1);
gemAffineParts ap;
hsAffineParts hsParts;
decomp_affine(hsM.fMap, &ap);
AP_SET(hsParts, ap);
Point3 sAx1;
sAx1=Point3(hsParts.fK.fX, hsParts.fK.fY, hsParts.fK.fZ);
if( hsParts.fF < 0.f )
{
sAx1=-sAx1;
}
Quat sQ1(hsParts.fU.fX, hsParts.fU.fY, hsParts.fU.fZ, hsParts.fU.fW);
// return ScaleValue(sAx, sQ);
AffineParts parts = GetLocalNodeParts(node, parent, t);
Point3 sAx(parts.k.x, parts.k.y, parts.k.z);
if( parts.f < 0.f )
{
sAx=-sAx;
}
Quat sQ(parts.u.x, parts.u.y, parts.u.z, parts.u.w);
return ScaleValue(sAx, sQ);
}
// GETSCALEKEY
ScaleValue GetScaleKey(Int32 i, std::vector<nodeTMInfo *>& mat3Array, hsAffineParts* parts)
{
hsAffineParts myParts;
if (!parts)
{
parts=&myParts;
GetParts(i, mat3Array, parts);
}
Point3 sAx;
sAx=Point3(parts->fK.fX, parts->fK.fY, parts->fK.fZ);
if( parts->fF < 0.f )
{
sAx=-sAx;
}
Quat sQ(parts->fU.fX, parts->fU.fY, parts->fU.fZ, parts->fU.fW);
return ScaleValue(sAx, sQ);
}
// GETLOCALNODEPARTS
AffineParts GetLocalNodeParts(INode *node, INode *parent, TimeValue t)
{
Matrix3 localTM = node->GetNodeTM(t); // world transform of source node
INode *parent2 = node->GetParentNode();
// localize it
Matrix3 parentTMX = parent->GetNodeTM(t);
Matrix3 parentTM = parent2->GetNodeTM(t);
Matrix3 invParent = Inverse(parentTM);
localTM *= invParent;
AffineParts parts;
decomp_affine(localTM, &parts);
return parts;
}
*/