You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

699 lines
21 KiB

/*==LICENSE==*
CyanWorlds.com Engine - MMOG client, server and tools
Copyright (C) 2011 Cyan Worlds, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Additional permissions under GNU GPL version 3 section 7
If you modify this Program, or any covered work, by linking or
combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK,
NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent
JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK
(or a modified version of those libraries),
containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA,
PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG
JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the
licensors of this Program grant you additional
permission to convey the resulting work. Corresponding Source for a
non-source form of such a combination shall include the source code for
the parts of OpenSSL and IJG JPEG Library used as well as that of the covered
work.
You can contact Cyan Worlds, Inc. by email legal@cyan.com
or by snail mail at:
Cyan Worlds, Inc.
14617 N Newport Hwy
Mead, WA 99021
*==LICENSE==*/
/////////////////////////////////////////////////////////////////////////////////////////
//
// INCLUDES
//
/////////////////////////////////////////////////////////////////////////////////////////
//#include <hkmath/vector3.h>
//#include <hkdynamics/entity/rigidbody.h>
#include "plAntiGravAction.h" // descends from Havok class, so must be included first, like havok objects
// singular
#include "plAvBrainSwim.h"
// local
#include "plArmatureMod.h"
#include "plAvBehaviors.h"
#include "plAvBrainHuman.h"
#include "plAGAnim.h"
#include "plAvBrainDrive.h"
#include "plMatrixChannel.h"
#include "plSwimRegion.h"
#include "plAvatarTasks.h"
#include "plArmatureEffects.h"
#include "plAvTaskBrain.h"
// global
#include "hsQuat.h"
#include "hsTimer.h"
#include "plPhysical.h"
#include "plPhysicalControllerCore.h"
#include "plAvCallbackAction.h"
// other
#include "plPhysical/plCollisionDetector.h"
#include "plPipeline/plDebugText.h"
#include "plMessage/plAvatarMsg.h"
#include "plMessage/plSwimMsg.h"
#include "plMessage/plLOSRequestMsg.h"
#include "plMessage/plLOSHitMsg.h"
#include "plMessage/plInputEventMsg.h"
#include "plMessage/plSimStateMsg.h"
#include "pnMessage/plCameraMsg.h"
#include "pfMessage/plArmatureEffectMsg.h"
class plSwimBehavior : public plArmatureBehavior
{
friend class plAvBrainSwim;
public:
plSwimBehavior() : fAvMod(nil), fSwimBrain(nil) {}
virtual ~plSwimBehavior() {}
void Init(plAGAnim *anim, hsBool loop, plAvBrainSwim *brain, plArmatureMod *body, UInt8 index)
{
plArmatureBehavior::Init(anim, loop, brain, body, index);
fAvMod = body;
fSwimBrain = brain;
}
virtual hsBool PreCondition(double time, float elapsed) { return true; }
protected:
virtual void IStart()
{
plArmatureBehavior::IStart();
fAvMod->SynchIfLocal(hsTimer::GetSysSeconds(), false);
}
virtual void IStop()
{
plArmatureBehavior::IStop();
fAvMod->SynchIfLocal(hsTimer::GetSysSeconds(), false);
}
plArmatureMod *fAvMod;
plAvBrainSwim *fSwimBrain;
};
class SwimForward: public plSwimBehavior
{
public:
/** Walk key is down, fast key is not down */
virtual hsBool PreCondition(double time, float elapsed)
{
return (fAvMod->ForwardKeyDown() && !fAvMod->FastKeyDown());
}
};
class SwimForwardFast: public plSwimBehavior
{
public:
virtual hsBool PreCondition(double time, float elapsed)
{
return (fAvMod->ForwardKeyDown() && fAvMod->FastKeyDown());
}
};
class SwimBack : public plSwimBehavior
{
public:
virtual hsBool PreCondition(double time, float elapsed)
{
return (fAvMod->BackwardKeyDown());
}
};
class TreadWater: public plSwimBehavior
{
};
class SwimLeft : public plSwimBehavior
{
public:
virtual hsBool PreCondition(double time, float elapsed)
{
return ((fAvMod->StrafeLeftKeyDown() || (fAvMod->StrafeKeyDown() && fAvMod->TurnLeftKeyDown())) &&
!(fAvMod->StrafeRightKeyDown() || (fAvMod->StrafeKeyDown() && fAvMod->TurnRightKeyDown())) &&
!(fAvMod->ForwardKeyDown() || fAvMod->BackwardKeyDown()));
}
};
class SwimRight : public plSwimBehavior
{
public:
virtual hsBool PreCondition(double time, float elapsed)
{
return ((fAvMod->StrafeRightKeyDown() || (fAvMod->StrafeKeyDown() && fAvMod->TurnRightKeyDown())) &&
!(fAvMod->StrafeLeftKeyDown() || (fAvMod->StrafeKeyDown() && fAvMod->TurnLeftKeyDown())) &&
!(fAvMod->ForwardKeyDown() || fAvMod->BackwardKeyDown()));
}
};
class SwimTurn: public plSwimBehavior
{
public:
virtual void Process(double time, float elapsed)
{
static const float maxTurnSpeed = 1.0f; // radians per second;
static const float timeToMaxTurn = 0.5f;
static const float incPerSec = maxTurnSpeed / timeToMaxTurn;
// hsAssert(0, "fixme physx");
float oldSpeed = fabs(fSwimBrain->fCallbackAction->GetTurnStrength());
float thisInc = elapsed * incPerSec;
float newSpeed = __min(oldSpeed + thisInc, maxTurnSpeed);
fSwimBrain->fCallbackAction->SetTurnStrength(newSpeed * fAvMod->GetKeyTurnStrength() + fAvMod->GetAnalogTurnStrength());
// the turn is actually applied during PhysicsUpdate
}
virtual void IStop()
{
// hsAssert(0, "fixme physx");
if (fSwimBrain->fCallbackAction)
fSwimBrain->fCallbackAction->SetTurnStrength(0.0f);
plSwimBehavior::IStop();
}
};
class SwimTurnLeft : public SwimTurn
{
public:
virtual hsBool PreCondition(double time, float elapsed)
{
return (fAvMod->GetTurnStrength() > 0 && (fAvMod->ForwardKeyDown() || fAvMod->BackwardKeyDown()));
}
};
class SwimTurnRight : public SwimTurn
{
public:
virtual hsBool PreCondition(double time, float elapsed)
{
return (fAvMod->GetTurnStrength() < 0 && (fAvMod->ForwardKeyDown() || fAvMod->BackwardKeyDown()));
}
};
class TreadTurnLeft : public plSwimBehavior
{
public:
virtual hsBool PreCondition(double time, float elapsed)
{
return (fAvMod->TurnLeftKeyDown() && !fAvMod->ForwardKeyDown() && !fAvMod->BackwardKeyDown());
}
};
class TreadTurnRight : public plSwimBehavior
{
public:
virtual hsBool PreCondition(double time, float elapsed)
{
return (fAvMod->TurnRightKeyDown() && !fAvMod->ForwardKeyDown() && !fAvMod->BackwardKeyDown());
}
};
///////////////////////////////////////////////////////////////////////////////////////////
const hsScalar plAvBrainSwim::kMinSwimDepth = 4.0f;
plAvBrainSwim::plAvBrainSwim() :
fCallbackAction(nil),
fMode(kWalking),
fSurfaceDistance(0.f)
{
fSurfaceProbeMsg = TRACKED_NEW plLOSRequestMsg();
fSurfaceProbeMsg->SetReportType(plLOSRequestMsg::kReportHitOrMiss);
fSurfaceProbeMsg->SetRequestType(plSimDefs::kLOSDBSwimRegion);
fSurfaceProbeMsg->SetTestType(plLOSRequestMsg::kTestAny);
fSurfaceProbeMsg->SetRequestID(plArmatureMod::kAvatarLOSSwimSurface);
}
plAvBrainSwim::~plAvBrainSwim()
{
if(fCallbackAction)
{
IDetachAction();
delete fCallbackAction;
fCallbackAction=nil;
}
fSurfaceProbeMsg->UnRef();
int i;
for (i = 0; i < fBehaviors.GetCount(); i++)
delete fBehaviors[i];
}
hsBool plAvBrainSwim::Apply(double time, hsScalar elapsed)
{
IProbeSurface();
if (fMode == kWalking)
{
if (fSurfaceDistance >= 0.f)
{
fMode = kWading;
plAvBrainHuman *huBrain = plAvBrainHuman::ConvertNoRef(fAvMod->GetNextBrain(this));
// hsAssert(0, "fixme physx");
if (huBrain && !huBrain->fCallbackAction->IsOnGround())
{
// We're jumping in! Trigger splash effect (sound)
plArmatureEffectMsg *msg = TRACKED_NEW plArmatureEffectMsg(fAvMod->GetArmatureEffects()->GetKey(), kTime);
msg->fEventTime = (hsScalar)time;
msg->fTriggerIdx = plArmatureMod::kImpact;
plEventCallbackInterceptMsg *iMsg = TRACKED_NEW plEventCallbackInterceptMsg;
iMsg->AddReceiver(fAvMod->GetArmatureEffects()->GetKey());
iMsg->fEventTime = (hsScalar)time;
iMsg->fEvent = kTime;
iMsg->SetMessage(msg);
iMsg->Send();
}
}
}
plArmatureBrain *nextBrain = fAvMod->GetNextBrain(this);
if (fMode == kWading)
{
if (fSurfaceDistance > kMinSwimDepth && fSurfaceDistance < 100.0f)
IStartSwimming(true);
else if (fSurfaceDistance < 0.f)
fMode = kWalking;
}
int i;
if (fMode == kWalking || fMode == kWading || nextBrain->IsRunningTask())
{
nextBrain->Apply(time, elapsed); // Let brain below process for us
for (i = 0; i < kSwimBehaviorMax; i++)
fBehaviors[i]->SetStrength(0.f, 2.f);
}
else if (fMode == kAbort)
return false;
else
{
if (fMode == kSwimming2D)
{
IProcessSwimming2D(time, elapsed);
// The contact check is so that if buoyancy bobs us a little too high, we don't
// switch to wading only to fall again.
// hsAssert(0, "fixme physx");
if (fSurfaceDistance < kMinSwimDepth-.5 && fCallbackAction->HadContacts())
IStartWading();
}
else if (fMode == kSwimming3D)
IProcessSwimming3D(time, elapsed);
}
return plArmatureBrain::Apply(time, elapsed);
}
hsBool plAvBrainSwim::MsgReceive(plMessage *msg)
{
plLOSHitMsg *losHit = plLOSHitMsg::ConvertNoRef(msg);
if (losHit)
{
if (losHit->fRequestID == plArmatureMod::kAvatarLOSSwimSurface)
{
plSwimRegionInterface *region = nil;
if (!losHit->fNoHit)
{
plSceneObject *hitObj = plSceneObject::ConvertNoRef(losHit->fObj->ObjectIsLoaded());
region = hitObj ? plSwimRegionInterface::ConvertNoRef(hitObj->GetGenericInterface(plSwimRegionInterface::Index())) : nil;
//100-fDistance because of casting the ray from above to get around physxs Raycast requirments
fSurfaceDistance = 100.f-losHit->fDistance;
}
else
fSurfaceDistance = -100.f;
// hsAssert(0, "fixme physx");
if (fCallbackAction)
{
if (region)
fCallbackAction->SetSurface(region, fArmature->GetTarget(0)->GetLocalToWorld().GetTranslate().fZ + fSurfaceDistance);
else
fCallbackAction->SetSurface(nil, 0.f);
}
return true;
}
}
plSwimMsg *swimMsg = plSwimMsg::ConvertNoRef(msg);
if (swimMsg)
{
if (swimMsg->GetIsLeaving())
fMode = kAbort;
return true;
}
plControlEventMsg *ctrlMsg = plControlEventMsg::ConvertNoRef(msg);
if (ctrlMsg)
return IHandleControlMsg(ctrlMsg);
if (fMode == kWalking || fMode == kWading)
return fAvMod->GetNextBrain(this)->MsgReceive(msg);
if (plAvSeekMsg *seekM = plAvSeekMsg::ConvertNoRef(msg))
{
// seek and subclasses always have a seek first
if (!seekM->fNoSeek)
{
// use dumb seek
plAvSeekTask *seek = TRACKED_NEW plAvSeekTask(seekM->fSeekPoint, seekM->fAlignType, seekM->fAnimName);
QueueTask(seek);
}
// else don't seek at all.
plAvOneShotMsg * oneshotM = plAvOneShotMsg::ConvertNoRef(msg);
if(oneshotM)
{
// if it's a oneshot, add the oneshot task as well
plAvOneShotTask *oneshot = TRACKED_NEW plAvOneShotTask(oneshotM, fAvMod, this);
QueueTask(oneshot);
}
return true;
}
if (plArmatureBrain::MsgReceive(msg))
return true;
if (fMode == kWading) // Things like LOS need to go to the human brain below us.
return fAvMod->GetNextBrain(this)->MsgReceive(msg);
return false;
}
void plAvBrainSwim::Activate(plArmatureModBase* avMod)
{
plArmatureBrain::Activate(avMod);
IInitAnimations();
fSurfaceProbeMsg->SetSender(fAvMod->GetKey());
// turn our underlying brain back on until we're all the way in the water.
fAvMod->GetNextBrain(this)->Resume();
}
void plAvBrainSwim::Deactivate()
{
plArmatureBrain::Deactivate();
IDetachAction();
}
void plAvBrainSwim::Suspend()
{
if (fMode == kSwimming2D)
IDetachAction();
}
void plAvBrainSwim::Resume()
{
if (fMode == kSwimming2D)
IAttachAction();
}
bool plAvBrainSwim::IsWalking()
{
return fMode == kWalking;
}
bool plAvBrainSwim::IsWading()
{
return fMode == kWading;
}
bool plAvBrainSwim::IsSwimming()
{
return (fMode == kSwimming2D || fMode == kSwimming3D);
}
void plAvBrainSwim::IStartWading()
{
plArmatureBrain *nextBrain = fAvMod->GetNextBrain(this);
nextBrain->Resume();
fMode = kWading;
int i;
for (i = 0; i < fBehaviors.GetCount(); i++)
fBehaviors[i]->SetStrength(0.f, 2.f);
IDetachAction();
if (fAvMod->IsLocalAvatar())
{
plCameraMsg* pMsg = TRACKED_NEW plCameraMsg;
pMsg->SetBCastFlag(plMessage::kBCastByExactType);
pMsg->SetBCastFlag(plMessage::kNetPropagate, false);
pMsg->SetCmd(plCameraMsg::kResponderUndoThirdPerson);
pMsg->Send();
}
}
void plAvBrainSwim::IStartSwimming(bool is2D)
{
// if we *were* wading, the next brain will be running as well. turn it off
// if we weren't wading, there's no harm in suspending it redundantly.
plArmatureBrain *nextBrain = fAvMod->GetNextBrain(this);
nextBrain->Suspend();
IAttachAction();
if (is2D)
fMode = kSwimming2D;
else
fMode = kSwimming3D;
if (fAvMod->IsLocalAvatar())
{
plCameraMsg* pMsg = TRACKED_NEW plCameraMsg;
pMsg->SetBCastFlag(plMessage::kBCastByExactType);
pMsg->SetBCastFlag(plMessage::kNetPropagate, false);
pMsg->SetCmd(plCameraMsg::kResponderSetThirdPerson);
pMsg->Send();
}
}
hsBool plAvBrainSwim::IProcessSwimming2D(double time, float elapsed)
{
int i;
for (i = 0; i < fBehaviors.GetCount(); i++)
{
plSwimBehavior *behavior = (plSwimBehavior*)fBehaviors[i];
if (behavior->PreCondition(time, elapsed) && !IsRunningTask())
{
behavior->SetStrength(1.f, 2.f);
behavior->Process(time, elapsed);
}
else
behavior->SetStrength(0.f, 2.f);
}
// hsAssert(0, "fixme physx");
fCallbackAction->RecalcVelocity(time, time - elapsed);
return true;
}
hsBool plAvBrainSwim::IProcessSwimming3D(double time, float elapsed)
{
fAvMod->ApplyAnimations(time, elapsed);
return true;
}
hsBool plAvBrainSwim::IInitAnimations()
{
plAGAnim *treadWater = fAvMod->FindCustomAnim("SwimIdle");
plAGAnim *swimForward = fAvMod->FindCustomAnim("SwimSlow");
plAGAnim *swimForwardFast = fAvMod->FindCustomAnim("SwimFast");
plAGAnim *swimBack = fAvMod->FindCustomAnim("SwimBackward");
plAGAnim *swimLeft = fAvMod->FindCustomAnim("SideSwimLeft");
plAGAnim *swimRight = fAvMod->FindCustomAnim("SideSwimRight");
plAGAnim *treadWaterLeft = fAvMod->FindCustomAnim("TreadWaterTurnLeft");
plAGAnim *treadWaterRight = fAvMod->FindCustomAnim("TreadWaterTurnRight");
static const float defaultFade = 2.0f;
fBehaviors.SetCountAndZero(kSwimBehaviorMax);
plSwimBehavior *behavior;
fBehaviors[kTreadWater] = behavior = TRACKED_NEW TreadWater;
behavior->Init(treadWater, true, this, fAvMod, kTreadWater);
fBehaviors[kSwimForward] = behavior = TRACKED_NEW SwimForward;
behavior->Init(swimForward, true, this, fAvMod, kSwimForward);
fBehaviors[kSwimForwardFast] = behavior = TRACKED_NEW SwimForwardFast;
behavior->Init(swimForwardFast, true, this, fAvMod, kSwimForwardFast);
fBehaviors[kSwimBack] = behavior = TRACKED_NEW SwimBack;
behavior->Init(swimBack, true, this, fAvMod, kSwimBack);
fBehaviors[kSwimLeft] = behavior = TRACKED_NEW SwimLeft;
behavior->Init(swimLeft, true, this, fAvMod, kSwimLeft);
fBehaviors[kSwimRight] = behavior = TRACKED_NEW SwimRight;
behavior->Init(swimRight, true, this, fAvMod, kSwimRight);
fBehaviors[kSwimTurnLeft] = behavior = TRACKED_NEW SwimTurnLeft;
behavior->Init(nil, true, this, fAvMod, kSwimTurnLeft);
fBehaviors[kSwimTurnRight] = behavior = TRACKED_NEW SwimTurnRight;
behavior->Init(nil, true, this, fAvMod, kSwimTurnRight);
fBehaviors[kTreadTurnLeft] = behavior = TRACKED_NEW TreadTurnLeft;
behavior->Init(treadWaterLeft, true, this, fAvMod, kTreadTurnLeft);
fBehaviors[kTreadTurnRight] = behavior = TRACKED_NEW TreadTurnRight;
behavior->Init(treadWaterRight, true, this, fAvMod, kTreadTurnRight);
return true;
}
bool plAvBrainSwim::IAttachAction()
{
bool result = false;
if(fAvMod)
{
// hsAssert(0, "fixme physx");
plPhysicalControllerCore *physical = fAvMod->GetController();
if (physical)
{
if (!fCallbackAction)
{
plSceneObject * avObj = fArmature->GetTarget(0);
plAGModifier *agMod = const_cast<plAGModifier*>(plAGModifier::ConvertNoRef(FindModifierByClass(avObj, plAGModifier::Index())));
fCallbackAction = new plSwimmingController(avObj, agMod->GetApplicator(kAGPinTransform),physical);
// physical->AttachAction(fCallbackAction, true, false);
result = true;
}
else
{
fCallbackAction->ActivateController();
}
}
}
return result;
}
bool plAvBrainSwim::IDetachAction()
{
bool result = false;
if (fCallbackAction)
{
// hsAssert(0, "fixme physx");
// plPhysical *physical = fAvMod->GetPhysical();
//
// if(physical)
// {
// physical->RemoveAction(fCallbackAction);
// result = true; // there was an action and we removed it
// }
// TODO: We get a compiler warning about deleting a pointer to an
// undefined class. So, who knows what the code is actually doing.
// Seems bad. Just putting a note in here for whoever fixes the
// physx issue.
//delete fCallbackAction;
//fCallbackAction = nil;
}
return result;
}
void plAvBrainSwim::IProbeSurface()
{
hsPoint3 ourPos = fAvMod->GetTarget(0)->GetLocalToWorld().GetTranslate();
hsPoint3 up = ourPos;
up.fZ += 100;
fSurfaceProbeMsg->SetFrom(up);
fSurfaceProbeMsg->SetTo(ourPos);
fSurfaceProbeMsg->SendAndKeep();
}
hsBool plAvBrainSwim::IHandleControlMsg(plControlEventMsg* msg)
{
ControlEventCode moveCode = msg->GetControlCode();
if (msg->ControlActivated())
{
switch (moveCode)
{
case B_CONTROL_TOGGLE_PHYSICAL:
{
#ifndef PLASMA_EXTERNAL_RELEASE // external clients can't go non-physical
plAvBrainDrive *driver = TRACKED_NEW plAvBrainDrive(20, 1);
fAvMod->PushBrain(driver);
#endif
return true;
}
break;
}
}
return false;
}
void plAvBrainSwim::DumpToDebugDisplay(int &x, int &y, int lineHeight, char *strBuf, plDebugText &debugTxt)
{
sprintf(strBuf, "Brain type: Swim");
debugTxt.DrawString(x, y, strBuf, 0, 255, 255);
y += lineHeight;
switch(fMode) {
case kWading:
sprintf(strBuf, "Mode: Wading");
break;
case kSwimming2D:
sprintf(strBuf, "Mode: Swimming2D");
break;
case kSwimming3D:
sprintf(strBuf, "Mode: Swimming3D");
break;
case kAbort:
sprintf(strBuf, "Mode: Abort (you should never see this)");
break;
}
debugTxt.DrawString(x, y, strBuf);
y += lineHeight;
// hsAssert(0, "fixme physx");
// float buoy = fCallbackAction? fCallbackAction->GetBuoyancy() : 0.0f;
// sprintf(strBuf, "Distance to surface: %f Buoyancy: %f", fSurfaceDistance, buoy);
// debugTxt.DrawString(x, y, strBuf);
// y += lineHeight;
//
// hsVector3 linV;
// fAvMod->GetPhysical()->GetLinearVelocitySim(linV);
// hsVector3 angV;
// fAvMod->GetPhysical()->GetAngularVelocitySim(angV);
// hsScalar angle = angV.fZ > 0 ? angV.Magnitude() : -angV.Magnitude();
// sprintf(strBuf, "Velocity: Linear (%5.2f, %5.2f, %5.2f), Angular %5.2f", linV.fX, linV.fY, linV.fZ, angle);
// debugTxt.DrawString(x, y, strBuf);
// y += lineHeight;
int i;
for (i = 0; i < fBehaviors.GetCount(); i++)
fBehaviors[i]->DumpDebug(x, y, lineHeight, strBuf, debugTxt);
}