You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

896 lines
25 KiB

/*==LICENSE==*
CyanWorlds.com Engine - MMOG client, server and tools
Copyright (C) 2011 Cyan Worlds, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
You can contact Cyan Worlds, Inc. by email legal@cyan.com
or by snail mail at:
Cyan Worlds, Inc.
14617 N Newport Hwy
Mead, WA 99021
*==LICENSE==*/
#include "hsTypes.h"
#include "hsGeometry3.h"
#include "plParticle.h"
#include "plParticleEffect.h"
#include "plEffectTargetInfo.h"
#include "plConvexVolume.h"
#include "plBoundInterface.h"
#include "hsResMgr.h"
#include "plPipeline.h"
#include "hsFastMath.h"
#include "plMath/plRandom.h"
#include "plParticleSystem.h"
#include "plMessage/plParticleUpdateMsg.h"
///////////////////////////////////////////////////////////////////////////////////////////
plParticleCollisionEffect::plParticleCollisionEffect()
{
fBounds = nil;
fSceneObj = nil;
}
plParticleCollisionEffect::~plParticleCollisionEffect()
{
}
void plParticleCollisionEffect::PrepareEffect(const plEffectTargetInfo &target)
{
if (fBounds == nil)
{
plBoundInterface *bi = plBoundInterface::ConvertNoRef(fSceneObj->GetGenericInterface(plBoundInterface::Index()));
if (bi == nil)
return;
fBounds = bi->GetVolume();
}
}
hsBool plParticleCollisionEffect::MsgReceive(plMessage* msg)
{
plRefMsg* refMsg = plRefMsg::ConvertNoRef(msg);
plSceneObject *so;
if (refMsg)
{
if (so = plSceneObject::ConvertNoRef(refMsg->GetRef()))
{
if( refMsg->GetContext() & (plRefMsg::kOnCreate|plRefMsg::kOnRequest|plRefMsg::kOnReplace) )
fSceneObj = so;
else
fSceneObj = nil;
return true;
}
}
return hsKeyedObject::MsgReceive(msg);
}
void plParticleCollisionEffect::Read(hsStream *s, hsResMgr *mgr)
{
hsKeyedObject::Read(s, mgr);
plGenRefMsg* msg;
msg = TRACKED_NEW plGenRefMsg(GetKey(), plRefMsg::kOnCreate, 0, 0); // SceneObject
mgr->ReadKeyNotifyMe(s, msg, plRefFlags::kActiveRef);
fBounds = nil;
}
void plParticleCollisionEffect::Write(hsStream *s, hsResMgr *mgr)
{
hsKeyedObject::Write(s, mgr);
mgr->WriteKey(s, fSceneObj);
}
///////////////////////////////////////////////////////////////////////////////////////////
// Some permutations on the CollisionEffect follow
///////////////////////////////////////////////////////////////////////////////////////////
plParticleCollisionEffectBeat::plParticleCollisionEffectBeat()
{
}
hsBool plParticleCollisionEffectBeat::ApplyEffect(const plEffectTargetInfo &target, Int32 i)
{
hsAssert(i >= 0, "Use of default argument doesn't make sense for plParticleCollisionEffect");
if( !fBounds )
return false;
hsPoint3 *currPos = (hsPoint3 *)(target.fPos + i * target.fPosStride);
fBounds->ResolvePoint(*currPos);
return false;
}
///////////////////////////////////////////////////////////////////////////////////////////
plParticleCollisionEffectDie::plParticleCollisionEffectDie()
{
}
hsBool plParticleCollisionEffectDie::ApplyEffect(const plEffectTargetInfo &target, Int32 i)
{
hsAssert(i >= 0, "Use of default argument doesn't make sense for plParticleCollisionEffect");
if( !fBounds )
return false;
hsPoint3 *currPos = (hsPoint3 *)(target.fPos + i * target.fPosStride);
return fBounds->IsInside(*currPos);
}
///////////////////////////////////////////////////////////////////////////////////////////
plParticleCollisionEffectBounce::plParticleCollisionEffectBounce()
: fBounce(1.f),
fFriction(0.f)
{
}
hsBool plParticleCollisionEffectBounce::ApplyEffect(const plEffectTargetInfo &target, Int32 i)
{
hsAssert(i >= 0, "Use of default argument doesn't make sense for plParticleCollisionEffect");
if( !fBounds )
return false;
hsPoint3* currPos = (hsPoint3 *)(target.fPos + i * target.fPosStride);
hsVector3* currVel = (hsVector3*)(target.fVelocity + i * target.fVelocityStride);
fBounds->BouncePoint(*currPos, *currVel, fBounce, fFriction);
return false;
}
void plParticleCollisionEffectBounce::Read(hsStream *s, hsResMgr *mgr)
{
plParticleCollisionEffect::Read(s, mgr);
fBounce = s->ReadSwapScalar();
fFriction = s->ReadSwapScalar();
}
void plParticleCollisionEffectBounce::Write(hsStream *s, hsResMgr *mgr)
{
plParticleCollisionEffect::Write(s, mgr);
s->WriteSwapScalar(fBounce);
s->WriteSwapScalar(fFriction);
}
///////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////
plParticleFadeVolumeEffect::plParticleFadeVolumeEffect() : fLength(100.0f), fIgnoreZ(true)
{
}
plParticleFadeVolumeEffect::~plParticleFadeVolumeEffect()
{
}
//
// It's not really clear looking at the math here what's actually going on,
// but once you visualize it, it's pretty easy to follow. So the camera position,
// view direction, and length of the fade volume define a sphere, where the camera
// position is a point on the sphere, the view direction points from that surface
// point toward the center, and the length is the sphere's radius. Since the view
// direction points straight through the sphere, that sphere is the sweet zone for
// putting our particles to pile them up in front of the camera. But we'd like to
// do this independently for each axis (for efficiency, rather than true 3D calculations),
// so we put an axis aligned box around the sphere, and that's the volume we restrict
// our particles to.
// Now we could fade all around the box, but that's not really what we want, because
// that means fading particles that are behind us. And in the case where we're looking
// along an axis, the camera is pushed up against a face of the box (where the axis
// aligned box is tangent to the inscribed sphere), so we'd actually be fading
// particles just in front of the camera. Because of this non-symmetry, we're going to
// define the Max in a given dimension as the world space value for that dimension
// FARTHEST from the camera (NOT largest in value). So if the camera is looking
// in a negative direction in one dimension, the Max will be less than the Min for
// that dimension.
// So we set up our Max's and Min's for each dimension in PrepareEffect(), and then
// at runtime we calculate the parameter value of the particle ranging from 0 where
// particleLoc == Min to 1 where particleLoc == Max. If the parameter is outside
// [0..1], then we can move it into the box using the fractional part of the parameter.
// Finally, if the (possibly relocated) parameter value says the particle is approaching
// the Max value, we can calclulate its faded opacity from the parameter.
//
// Need to experiment to minimize this fade distance. The greater
// the fade distance, the more faded out (wasted) particles we're drawing.
// The shorter the distance, the more noticable the fade out.
// Note the wierdness between the fractions, because kFadeFrac is fraction
// of fLength, but kFadeParm and kInvFadeFrac are fraction of 2.f*fLength. Sorry.
const hsScalar kFadeFrac = 0.5f;
const hsScalar kFadeParm = 1.f - kFadeFrac * 0.5f;
const hsScalar kInvFadeFrac = 1.f / (kFadeFrac * 0.5f);
void plParticleFadeVolumeEffect::PrepareEffect(const plEffectTargetInfo &target)
{
hsPoint3 viewLoc = target.fContext.fPipeline->GetViewPositionWorld();
hsVector3 viewDir = target.fContext.fPipeline->GetViewDirWorld();
// Nuking out the setting of viewDir.fZ to 0 when we aren't centering
// about Z (fIgnoreZ == true), because we still want to center our
// volume about the camera (rather than push the camera to the edge of
// the cylinder) in that case, so we don't get artifacts when we look
// straight up or down. mf
hsPoint3 signs(viewDir.fX >= 0 ? 1.f : -1.f, viewDir.fY >= 0 ? 1.f : -1.f, viewDir.fZ >= 0 ? 1.f : -1.f);
fMax.fX = viewLoc.fX + (viewDir.fX + signs.fX) * fLength;
fMin.fX = fMax.fX - 2.f * signs.fX * fLength;
fMax.fY = viewLoc.fY + (viewDir.fY + signs.fY) * fLength;
fMin.fY = fMax.fY - 2.f * signs.fY * fLength;
fMax.fZ = viewLoc.fZ + (viewDir.fZ + signs.fZ) * fLength;
fMin.fZ = fMax.fZ - 2.f * signs.fZ * fLength;
fNorm.fX = 1.f / (fMax.fX - fMin.fX);
fNorm.fY = 1.f / (fMax.fY - fMin.fY);
fNorm.fZ = 1.f / (fMax.fZ - fMin.fZ);
}
hsBool plParticleFadeVolumeEffect::ApplyEffect(const plEffectTargetInfo& target, Int32 i)
{
hsPoint3 *currPos = (hsPoint3 *)(target.fPos + i * target.fPosStride);
hsScalar parm;
hsScalar fade = 1.f;
parm = (currPos->fX - fMin.fX) * fNorm.fX;
if( parm < 0 )
{
parm -= int(parm);
currPos->fX = fMax.fX + parm * (fMax.fX - fMin.fX);
parm += 1.f;
}
else if( parm > 1.f )
{
parm -= int(parm);
currPos->fX = fMin.fX + parm * (fMax.fX - fMin.fX);
}
if( parm > kFadeParm )
{
parm = 1.f - parm;
parm *= kInvFadeFrac;
if( parm < fade )
fade = parm;
}
parm = (currPos->fY - fMin.fY) * fNorm.fY;
if( parm < 0 )
{
parm -= int(parm);
currPos->fY = fMax.fY + parm * (fMax.fY - fMin.fY);
parm += 1.f;
}
else if( parm > 1.f )
{
parm -= int(parm);
currPos->fY = fMin.fY + parm * (fMax.fY - fMin.fY);
}
if( parm > kFadeParm )
{
parm = 1.f - parm;
parm *= kInvFadeFrac;
if( parm < fade )
fade = parm;
}
if( !fIgnoreZ )
{
parm = (currPos->fZ - fMin.fZ) * fNorm.fZ;
if( parm < 0 )
{
parm -= int(parm);
currPos->fZ = fMax.fZ + parm * (fMax.fZ - fMin.fZ);
parm += 1.f;
}
else if( parm > 1.f )
{
parm -= int(parm);
currPos->fZ = fMin.fZ + parm * (fMax.fZ - fMin.fZ);
}
if( parm > kFadeParm )
{
parm = 1.f - parm;
parm *= kInvFadeFrac;
if( parm < fade )
fade = parm;
}
}
if( fade < 1.f )
{
UInt32 *color = (UInt32 *)(target.fColor + i * target.fColorStride);
UInt32 alpha = (UInt32)((*color >> 24) * fade);
*color = (*color & 0x00ffffff) | (alpha << 24);
}
return false;
}
void plParticleFadeVolumeEffect::Read(hsStream *s, hsResMgr *mgr)
{
hsKeyedObject::Read(s, mgr);
fLength = s->ReadSwapScalar();
fIgnoreZ = s->ReadBool();
}
void plParticleFadeVolumeEffect::Write(hsStream *s, hsResMgr *mgr)
{
hsKeyedObject::Write(s, mgr);
s->WriteSwapScalar(fLength);
s->WriteBool(fIgnoreZ);
}
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
// Particle wind - Base class first
plParticleWindEffect::plParticleWindEffect()
: fWindVec(0,0,0),
fDir(1.f,0,0),
fSwirl(0.1f),
fConstancy(0),
fHorizontal(0),
fLastDirSecs(-1.f),
fRefDir(0.f,0.f,0.f),
fRandDir(1.f,0.f,0.f)
{
}
plParticleWindEffect::~plParticleWindEffect()
{
}
void plParticleWindEffect::Read(hsStream *s, hsResMgr *mgr)
{
hsKeyedObject::Read(s, mgr);
fStrength = s->ReadSwapScalar();
fConstancy = s->ReadSwapScalar();
fSwirl = s->ReadSwapScalar();
fHorizontal = s->ReadBool();
fRefDir.Read(s);
fDir.Read(s);
fRandDir = fDir;
}
void plParticleWindEffect::Write(hsStream *s, hsResMgr *mgr)
{
hsKeyedObject::Write(s, mgr);
s->WriteSwapScalar(fStrength);
s->WriteSwapScalar(fConstancy);
s->WriteSwapScalar(fSwirl);
s->WriteBool(fHorizontal);
fRefDir.Write(s);
fDir.Write(s);
}
void plParticleWindEffect::SetRefDirection(const hsVector3& v)
{
fRefDir = v;
hsScalar lenSq = fRefDir.MagnitudeSquared();
if( lenSq > 1.e-1f )
{
fDir = fRefDir * hsFastMath::InvSqrtAppr(lenSq);
fRandDir = fDir;
}
}
void plParticleWindEffect::PrepareEffect(const plEffectTargetInfo& target)
{
if( fLastDirSecs != target.fContext.fSecs )
{
static plRandom random;
fRandDir.fX += random.RandMinusOneToOne() * fSwirl;
fRandDir.fY += random.RandMinusOneToOne() * fSwirl;
if( !GetHorizontal() )
fRandDir.fZ += random.RandMinusOneToOne() * fSwirl;
hsFastMath::NormalizeAppr(fRandDir);
fDir = fRandDir + fRefDir;
hsFastMath::NormalizeAppr(fDir);
fWindVec = fDir * (fStrength * target.fContext.fSystem->GetWindMult() * target.fContext.fDelSecs);
fLastDirSecs = target.fContext.fSecs;
}
}
////////////////////////////////////////////////////////////////////////
// Localized wind (how much wind you're getting depends on where you are
plParticleLocalWind::plParticleLocalWind()
: fScale(0, 0, 0),
fSpeed(0),
fPhase(0,0,0),
fInvScale(0,0,0),
fLastPhaseSecs(-1.f)
{
}
plParticleLocalWind::~plParticleLocalWind()
{
}
void plParticleLocalWind::Read(hsStream *s, hsResMgr *mgr)
{
plParticleWindEffect::Read(s, mgr);
fScale.Read(s);
fSpeed = s->ReadSwapScalar();
}
void plParticleLocalWind::Write(hsStream *s, hsResMgr *mgr)
{
plParticleWindEffect::Write(s, mgr);
fScale.Write(s);
s->WriteSwapScalar(fSpeed);
}
void plParticleLocalWind::PrepareEffect(const plEffectTargetInfo& target)
{
if( fLastPhaseSecs != target.fContext.fSecs )
{
plParticleWindEffect::PrepareEffect(target);
fPhase += fDir * fSpeed * target.fContext.fDelSecs;
fInvScale.fX = fScale.fX > 0 ? 1.f / fScale.fX : 0;
fInvScale.fY = fScale.fY > 0 ? 1.f / fScale.fY : 0;
fInvScale.fZ = fScale.fZ > 0 ? 1.f / fScale.fZ : 0;
fLastPhaseSecs = target.fContext.fSecs;
}
}
hsBool plParticleLocalWind::ApplyEffect(const plEffectTargetInfo& target, Int32 i)
{
const hsPoint3& pos = *(hsPoint3 *)(target.fPos + i * target.fPosStride);
hsVector3& vel = *(hsVector3*)(target.fVelocity + i * target.fVelocityStride);
const hsScalar kMinToBother = 0;
float strength = 1.f / ( (1.f + fConstancy) * (1.f + fConstancy) );
float s, c, t;
t = (pos[0] - fPhase[0]) * fInvScale[0];
hsFastMath::SinCosAppr(t, s, c);
c += fConstancy;
if( c <= kMinToBother )
return false;
strength *= c;
t = (pos[1] - fPhase[1]) * fInvScale[1];
hsFastMath::SinCosAppr(t, s, c);
c += fConstancy;
if( c <= kMinToBother )
return false;
strength *= c;
#if 0 // if you turn this back on, strength needs to drop by another factor of (1.f + fConstancy)
t = (pos[2] - fPhase[2]) * fInvScale[2];
hsFastMath::SinCosAppr(t, s, c);
c += fConstancy;
if( c <= kMinToBother )
return false;
strength *= c;
#endif
const hsScalar& invMass = *(hsScalar*)(target.fInvMass + i * target.fInvMassStride);
strength *= invMass;
vel += fWindVec * strength;
return false;
}
////////////////////////////////////////////////////////////////////////
// Uniform wind - wind changes over time, but not space
plParticleUniformWind::plParticleUniformWind()
: fFreqMin(0.1f),
fFreqMax(0.2f),
fFreqCurr(0.1f),
fFreqRate(0.05f),
fCurrPhase(0),
fLastFreqSecs(-1.f),
fCurrentStrength(0)
{
}
plParticleUniformWind::~plParticleUniformWind()
{
}
void plParticleUniformWind::Read(hsStream *s, hsResMgr *mgr)
{
plParticleWindEffect::Read(s, mgr);
fFreqMin = s->ReadSwapScalar();
fFreqMax = s->ReadSwapScalar();
fFreqRate = s->ReadSwapScalar();
#if 0
fFreqMin = 1.f / 6.f;
fFreqMax = 1.f / 1.f;
fConstancy = -0.5f;
fSwirl = 0.05f;
#endif
fFreqCurr = fFreqMin;
}
void plParticleUniformWind::Write(hsStream *s, hsResMgr *mgr)
{
plParticleWindEffect::Write(s, mgr);
s->WriteSwapScalar(fFreqMin);
s->WriteSwapScalar(fFreqMax);
s->WriteSwapScalar(fFreqRate);
}
void plParticleUniformWind::SetFrequencyRange(hsScalar minSecsPerCycle, hsScalar maxSecsPerCycle)
{
const hsScalar kMinSecsPerCycle = 1.f;
if( minSecsPerCycle < kMinSecsPerCycle )
minSecsPerCycle = kMinSecsPerCycle;
if( minSecsPerCycle < kMinSecsPerCycle )
minSecsPerCycle = kMinSecsPerCycle;
if( minSecsPerCycle < maxSecsPerCycle )
{
fFreqMin = 1.f / maxSecsPerCycle;
fFreqMax = 1.f / minSecsPerCycle;
}
else
{
fFreqMin = 1.f / minSecsPerCycle;
fFreqMax = 1.f / maxSecsPerCycle;
}
}
void plParticleUniformWind::SetFrequencyRate(hsScalar secsPerCycle)
{
const hsScalar kMinSecsPerCycle = 1.f;
if( secsPerCycle < kMinSecsPerCycle )
secsPerCycle = kMinSecsPerCycle;
fFreqRate = 1.f / secsPerCycle;
}
void plParticleUniformWind::PrepareEffect(const plEffectTargetInfo& target)
{
plParticleWindEffect::PrepareEffect(target);
if( fLastFreqSecs != target.fContext.fSecs )
{
static plRandom random;
const double kTwoPi = hsScalarPI * 2.0;
double t0 = fFreqCurr * fLastFreqSecs + fCurrPhase;
hsScalar t1 = (hsScalar)fmod(t0, kTwoPi);
fCurrPhase -= t0 - t1;
fFreqCurr += fFreqRate * target.fContext.fDelSecs * random.RandZeroToOne();
if( fFreqCurr > fFreqMax )
{
fFreqCurr = fFreqMax;
fFreqRate = -fFreqRate;
}
else if( fFreqCurr < fFreqMin )
{
fFreqCurr = fFreqMin;
fFreqRate = -fFreqRate;
}
hsScalar phaseDel = (hsScalar)(t1 - (fFreqCurr * fLastFreqSecs + fCurrPhase));
fCurrPhase += phaseDel;
hsScalar t = hsScalar(fFreqCurr * target.fContext.fSecs + fCurrPhase);
hsScalar s;
hsFastMath::SinCosAppr(t, s, fCurrentStrength);
fCurrentStrength += fConstancy;
fCurrentStrength /= (1.f + fConstancy);
if( fCurrentStrength < 0 )
fCurrentStrength = 0;
fLastFreqSecs = target.fContext.fSecs;
}
}
hsBool plParticleUniformWind::ApplyEffect(const plEffectTargetInfo& target, Int32 i)
{
hsVector3& vel = *(hsVector3*)(target.fVelocity + i * target.fVelocityStride);
const hsScalar& invMass = *(hsScalar*)(target.fInvMass + i * target.fInvMassStride);
vel += fWindVec * (invMass * fCurrentStrength);
return false;
}
////////////////////////////////////////////////////////////////////////
// Simplified flocking.
plParticleFlockEffect::plParticleFlockEffect() :
fInfAvgRadSq(1),
fInfRepRadSq(1),
fAvgVelStr(1),
fRepDirStr(1),
fGoalOrbitStr(1),
fGoalChaseStr(1),
fGoalDistSq(1),
fFullChaseDistSq(1),
fMaxOrbitSpeed(1),
fMaxChaseSpeed(1),
fMaxParticles(0),
fDistSq(nil),
fInfluences(nil)
{
fTargetOffset.Set(0.f, 0.f, 0.f);
fDissenterTarget.Set(0.f, 0.f, 0.f);
}
plParticleFlockEffect::~plParticleFlockEffect()
{
SetMaxParticles(0);
}
void plParticleFlockEffect::IUpdateDistances(const plEffectTargetInfo& target)
{
int i, j;
int numParticles = hsMinimum(fMaxParticles, target.fNumValidParticles);
for (i = 0; i < numParticles; i++)
{
for (j = i + 1; j < numParticles; j++)
{
hsVector3 diff((hsPoint3*)(target.fPos + i * target.fPosStride), (hsPoint3*)(target.fPos + j * target.fPosStride));
fDistSq[i * fMaxParticles + j] = fDistSq[j * fMaxParticles + i] = diff.MagnitudeSquared();
}
}
}
void plParticleFlockEffect::IUpdateInfluences(const plEffectTargetInfo &target)
{
int i, j;
int numParticles = hsMinimum(fMaxParticles, target.fNumValidParticles);
for (i = 0; i < numParticles; i++)
{
int numAvg = 0;
int numRep = 0;
fInfluences[i].fAvgVel.Set(0.f, 0.f, 0.f);
fInfluences[i].fRepDir.Set(0.f, 0.f, 0.f);
for (j = 0; j < numParticles; j++)
{
if (i == j)
continue;
const int distIdx = i * fMaxParticles + j;
if (fDistSq[distIdx] > fInfAvgRadSq)
{
numAvg++;
fInfluences[i].fAvgVel += *(hsVector3*)(target.fVelocity + j * target.fVelocityStride);
}
if (fDistSq[distIdx] > fInfRepRadSq)
{
numRep++;
hsVector3 repDir((hsPoint3*)(target.fPos + i * target.fPosStride), (hsPoint3*)(target.fPos + j * target.fPosStride));
repDir.Normalize();
fInfluences[i].fRepDir += repDir;
}
}
if (numAvg > 0)
fInfluences[i].fAvgVel /= (hsScalar)numAvg;
if (numRep > 0)
fInfluences[i].fRepDir /= (hsScalar)numRep;
}
}
void plParticleFlockEffect::PrepareEffect(const plEffectTargetInfo& target)
{
IUpdateDistances(target);
IUpdateInfluences(target);
}
// Some of this is the same for every particle and should be cached in PrepareEffect().
// Holding off on that until I like the behavior.
hsBool plParticleFlockEffect::ApplyEffect(const plEffectTargetInfo& target, Int32 i)
{
if (i >= fMaxParticles)
return false; // Don't have the memory to deal with you. Good luck kid...
const hsPoint3 &pos = *(hsPoint3*)(target.fPos + i * target.fPosStride);
hsVector3 &vel = *(hsVector3*)(target.fVelocity + i * target.fVelocityStride);
hsScalar curSpeed = vel.Magnitude();
hsPoint3 goal;
if (*(UInt32*)(target.fMiscFlags + i * target.fMiscFlagsStride) & plParticleExt::kImmortal)
goal = target.fContext.fSystem->GetTarget(0)->GetLocalToWorld().GetTranslate() + fTargetOffset;
else
goal = fDissenterTarget;
hsVector3 goalDir;
goalDir.Set(&(goal - pos));
hsScalar distSq = goalDir.MagnitudeSquared();
goalDir.Normalize();
hsScalar goalStr;
hsScalar maxSpeed;
hsScalar maxSpeedSq;
if (distSq <= fGoalDistSq)
{
goalStr = fGoalOrbitStr;
if (i & 0x1)
goalDir.Set(goalDir.fY, -goalDir.fX, goalDir.fZ);
else
goalDir.Set(-goalDir.fY, goalDir.fX, goalDir.fZ);
maxSpeed = fMaxOrbitSpeed;
}
else if (distSq >= fFullChaseDistSq)
{
goalStr = fGoalChaseStr;
maxSpeed = fMaxChaseSpeed;
}
else
{
hsScalar pct = (distSq - fGoalDistSq) / (fFullChaseDistSq - fGoalDistSq);
goalStr = fGoalOrbitStr + (fGoalChaseStr - fGoalOrbitStr) * pct;
maxSpeed = fMaxOrbitSpeed + (fMaxChaseSpeed - fMaxOrbitSpeed) * pct;
}
maxSpeedSq = maxSpeed * maxSpeed;
vel += (fInfluences[i].fAvgVel - vel) * (fAvgVelStr * target.fContext.fDelSecs);
vel += goalDir * (curSpeed * goalStr * target.fContext.fDelSecs);
vel += fInfluences[i].fRepDir * (curSpeed * fRepDirStr * target.fContext.fDelSecs);
if (vel.MagnitudeSquared() > maxSpeedSq)
{
vel.Normalize();
vel *= maxSpeed;
}
return false;
}
void plParticleFlockEffect::SetMaxParticles(const UInt16 num)
{
delete [] fDistSq;
delete [] fInfluences;
fMaxParticles = num;
if (num > 0)
{
fDistSq = TRACKED_NEW hsScalar[num * num];
fInfluences = TRACKED_NEW plParticleInfluenceInfo[num];
}
}
void plParticleFlockEffect::Read(hsStream *s, hsResMgr *mgr)
{
plParticleEffect::Read(s, mgr);
fTargetOffset.Read(s);
fDissenterTarget.Read(s);
fInfAvgRadSq = s->ReadSwapScalar();
fInfRepRadSq = s->ReadSwapScalar();
fGoalDistSq = s->ReadSwapScalar();
fFullChaseDistSq = s->ReadSwapScalar();
fAvgVelStr = s->ReadSwapScalar();
fRepDirStr = s->ReadSwapScalar();
fGoalOrbitStr = s->ReadSwapScalar();
fGoalChaseStr = s->ReadSwapScalar();
SetMaxOrbitSpeed(s->ReadSwapScalar());
SetMaxChaseSpeed(s->ReadSwapScalar());
SetMaxParticles((UInt16)s->ReadSwapScalar());
}
void plParticleFlockEffect::Write(hsStream *s, hsResMgr *mgr)
{
plParticleEffect::Write(s, mgr);
fTargetOffset.Write(s);
fDissenterTarget.Write(s);
s->WriteSwapScalar(fInfAvgRadSq);
s->WriteSwapScalar(fInfRepRadSq);
s->WriteSwapScalar(fGoalDistSq);
s->WriteSwapScalar(fFullChaseDistSq);
s->WriteSwapScalar(fAvgVelStr);
s->WriteSwapScalar(fRepDirStr);
s->WriteSwapScalar(fGoalOrbitStr);
s->WriteSwapScalar(fGoalChaseStr);
s->WriteSwapScalar(fMaxOrbitSpeed);
s->WriteSwapScalar(fMaxChaseSpeed);
s->WriteSwapScalar(fMaxParticles);
}
hsBool plParticleFlockEffect::MsgReceive(plMessage *msg)
{
plParticleFlockMsg *flockMsg = plParticleFlockMsg::ConvertNoRef(msg);
if (flockMsg)
{
switch (flockMsg->fCmd)
{
case plParticleFlockMsg::kFlockCmdSetDissentPoint:
fDissenterTarget.Set(flockMsg->fX, flockMsg->fY, flockMsg->fZ);
break;
case plParticleFlockMsg::kFlockCmdSetOffset:
fTargetOffset.Set(flockMsg->fX, flockMsg->fY, flockMsg->fZ);
break;
default:
break;
}
return true;
}
return plParticleEffect::MsgReceive(msg);
}
///////////////////////////////////////////////////////////////////////////////////////
plParticleFollowSystemEffect::plParticleFollowSystemEffect() : fEvalThisFrame(true)
{
fOldW2L = hsMatrix44::IdentityMatrix();
}
void plParticleFollowSystemEffect::PrepareEffect(const plEffectTargetInfo& target)
{
fEvalThisFrame = (fOldW2L != target.fContext.fSystem->GetTarget(0)->GetWorldToLocal());
}
hsBool plParticleFollowSystemEffect::ApplyEffect(const plEffectTargetInfo& target, Int32 i)
{
if (fEvalThisFrame)
{
if (i < target.fFirstNewParticle && !fOldW2L.IsIdentity())
{
hsPoint3 &pos = *(hsPoint3*)(target.fPos + i * target.fPosStride);
pos = target.fContext.fSystem->GetTarget(0)->GetLocalToWorld() * fOldW2L * pos;
}
}
return true;
}
void plParticleFollowSystemEffect::EndEffect(const plEffectTargetInfo& target)
{
if (fEvalThisFrame)
fOldW2L = target.fContext.fSystem->GetTarget(0)->GetWorldToLocal();
}