You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3109 lines
79 KiB

/*==LICENSE==*
CyanWorlds.com Engine - MMOG client, server and tools
Copyright (C) 2011 Cyan Worlds, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
You can contact Cyan Worlds, Inc. by email legal@cyan.com
or by snail mail at:
Cyan Worlds, Inc.
14617 N Newport Hwy
Mead, WA 99021
*==LICENSE==*/
#include "hsTypes.h"
#include "hsBounds.h"
#include "hsStream.h"
#include "hsFastMath.h"
#if defined(__MWERKS__) && !defined(HS_DEBUGGING)
#pragma optimization_level 2
#endif
const hsScalar hsBounds::kRealSmall = 1.0e-5f;
///////////////////////////////////////////////////////////////////////////////////////
//
// hsBounds
//
/////////////////////////////////////////////////////////////////////////////////////////
void hsBounds::Read(hsStream *s)
{
fType =(hsBoundsType) s->ReadSwap32();
}
void hsBounds::Write(hsStream *s)
{
s->WriteSwap32((Int32)fType);
}
///////////////////////////////////////////////////////////////////////////////////////
//
// hsBounds3
//
/////////////////////////////////////////////////////////////////////////////////////////
#if 0 // MESH_GEN_DEFER
void hsBounds3::Draw(hsGView3* v, hsG3DDevice* d,
hsScalar r, hsScalar g, hsScalar b, hsScalar a,
hsBool spheric)
{
hsGViewClipState* clipState = v->SaveClipDisabled();
if( hsGClip3::kClipCulled & v->ClipTestBounds(this) )
{
v->RestoreClipDisabled(clipState);
return;
}
// Setup Material
hsGMaterial *mat = TRACKED_NEW hsGMaterial;
hsGLayer* lay = mat->MakeBaseLayer();
lay->SetAmbientColor(r,g,b,a);
lay->SetMiscFlags(hsGMatState::kMiscWireFrame | hsGMatState::kMiscTwoSided);
lay->SetShadeFlags(hsGMatState::kShadeNoShade);
mat->SetLayer(lay, 0);
// Setup tMesh
hsGTriMesh tMesh;
if( spheric )
MakeTriMeshSphere(&tMesh);
else
MakeTriMesh(&tMesh, hsTriangle3::kTwoSided);
tMesh.SetMaterial(mat);
hsRefCnt_SafeUnRef(mat);
tMesh.Render(v,d);
v->RestoreClipDisabled(clipState);
}
#endif // MESH_GEN_DEFER
void hsBounds3::Transform(const hsMatrix44 *mat)
{
#if 0 // IDENT
if( mat->fFlags & hsMatrix44::kIsIdent )
return;
#endif // IDENT
hsAssert(fType != kBoundsUninitialized, "Can't transform an unitialized bound");
if(fType == kBoundsNormal)
{
hsPoint3 corners[8];
this->GetCorners(corners);
mat->MapPoints(8, corners);
this->Reset(8,corners);
fBounds3Flags &= ~kCenterValid;
}
}
void hsBounds3::Reset(const hsPoint3 *p)
{
fType = kBoundsNormal;
fMins = fMaxs = *p;
fBounds3Flags |= kCenterValid;
fCenter = *p;
}
void hsBounds3::Reset(const hsBounds3 *b)
{
if( kBoundsNormal == b->fType )
{
fType = kBoundsNormal;
fMins = b->fMins;
fMaxs = b->fMaxs;
if( b->fBounds3Flags & kCenterValid )
{
fBounds3Flags |= kCenterValid;
fCenter = b->fCenter;
}
else
fBounds3Flags &= ~kCenterValid;
}
else
fType = b->fType;
}
void hsBounds3::Reset(int n, const hsPoint3 *p)
{
fType = kBoundsNormal;
fMins = fMaxs = *p;
for(int i = 1; i < n ; i++)
this->Union(&p[i]);
fBounds3Flags &= ~kCenterValid;
}
void hsBounds3::Union(const hsPoint3 *p)
{
if(fType == kBoundsNormal) // Add this point if bounds is normal
{
for (int i = 0; i < 3; i++)
{
if ((*p)[i] > fMaxs[i])
fMaxs[i] =(*p)[i];
else if ((*p)[i] < fMins[i])
fMins[i] =(*p)[i];
}
fBounds3Flags &= ~kCenterValid;
}
else
{
if(fType != kBoundsFull) // Otherwise re-init unless bounds is full already
this->Reset(p);
}
}
void hsBounds3::Union(const hsVector3 *v)
{
if(fType == kBoundsNormal) // Add this point if bounds is normal
{
for (int i = 0; i < 3; i++)
{
if( (*v)[i] > 0 )
fMaxs[i] += (*v)[i];
else
fMins[i] += (*v)[i];
}
fBounds3Flags &= ~kCenterValid;
}
}
void hsBounds3::Union(const hsBounds3 *p)
{
if(fType == kBoundsNormal && p->GetType() == kBoundsNormal) // Add this point if bounds is normal
{
for (int i = 0; i < 3; i++)
{
if (p->fMaxs[i] > fMaxs[i])
fMaxs[i] = p->fMaxs[i];
if (p->fMins[i] < fMins[i])
fMins[i] = p->fMins[i];
}
fBounds3Flags &= ~kCenterValid;
}
else if(fType == kBoundsEmpty || fType == kBoundsUninitialized)
{
*this = *p;
}
// If fType is kBoundsFull don't do anything
}
void hsBounds3::MakeSymmetric(const hsPoint3* p)
{
if( fType != kBoundsNormal )
return;
hsScalar delMax = 0;
int i;
for( i = 0; i < 3; i++ )
{
hsScalar delUp;
delUp = fMaxs[i] - (*p)[i];
delMax = hsMaximum(delMax, delUp);
delUp = (*p)[i] - fMins[i];
delMax = hsMaximum(delMax, delUp);
}
const hsScalar sqrtTwo = 1.41421f;
delMax *= sqrtTwo;
hsAssert((delMax > -1.e6f)&&(delMax < 1.e6f), "MakeSymmetric going out to sea");
fCenter = *p;
fMaxs.Set(delMax, delMax, delMax);
fMaxs += fCenter;
fMins.Set(-delMax, -delMax, -delMax);
fMins += fCenter;
fBounds3Flags |= kCenterValid;
}
void hsBounds3::InscribeSphere()
{
if( fType != kBoundsNormal )
return;
const hsScalar ooSix = hsScalarInvert(2.f * 3.f);
hsScalar a = GetMaxDim() * ooSix;
hsPoint3 p = GetCenter();
p.fX += a;
p.fY += a;
p.fZ += a;
fMaxs = p;
a *= -2.f;
p.fX += a;
p.fY += a;
p.fZ += a;
fMins = p;
// Center still valid, type still normal
}
// neg, pos, zero == disjoint, I contain other, overlap
Int32 hsBounds3::TestBound(const hsBounds3& other) const
{
Int32 retVal = 1;
int i;
for( i = 0; i < 3; i++ )
{
if( GetMins()[i] > other.GetMaxs()[i] )
return -1;
if( GetMaxs()[i] < other.GetMins()[i] )
return -1;
if( GetMaxs()[i] < other.GetMaxs()[i] )
retVal = 0;
if( GetMins()[i] > other.GetMins()[i] )
retVal = 0;
}
return retVal;
}
hsBool hsBounds3::IsInside(const hsPoint3* pos) const
{
hsAssert(fType != kBoundsUninitialized, "Invalid bounds type for hsBounds3::IsInside() ");
if(fType == kBoundsEmpty)
return false;
if(fType == kBoundsFull)
return true;
return !(pos->fX>fMaxs.fX || pos->fY>fMaxs.fY || pos->fZ>fMaxs.fZ ||
pos->fX<fMins.fX || pos->fY<fMins.fY || pos->fZ<fMins.fZ);
}
#if 0 // MESH_GEN_DEFER
void hsBounds3::MakeTriMeshSphere(hsGTriMesh* tMesh, hsPoint3* cornersIn) const
{
hsPoint3 center = (*GetMaxs() + *GetMins()) * 0.5f;
hsScalar radius = GetMaxDim() * 0.5f;
const int nLong = 9;
const int nLati = 5;
int nPts = nLong * nLati + 3;
int nFaces = nLong * 2 + nLong * (nLati - 1) * 2; // == nLong * nLati * 2
tMesh->AllocatePointers(nFaces /*faces*/, nPts /*pts*/, 0 /*uvs*/, 0 /*colors*/);
tMesh->SetNumTriVertex(nPts);
int iCenter = nPts - 3;
int iNorthPole = nPts - 2;
int iSouthPole = nPts - 1;
hsPoint3 pt;
pt = center;
tMesh->SetPoint(iCenter, &pt);
pt.fZ += radius;
tMesh->SetPoint(iNorthPole, &pt);
pt.fZ -= 2.f * radius;
tMesh->SetPoint(iSouthPole, &pt);
int i, j;
for( i = 0; i < nLong; i++ )
{
for( j = 0; j < nLati; j++ )
{
hsScalar theta = (hsScalar(i) / nLong) * 2.f * hsScalarPI;
hsScalar cosTheta = hsCosine(theta);
hsScalar sinTheta = hsSine(theta);
hsScalar phi = (hsScalar(j+1) / (nLati+1)) * hsScalarPI;
hsScalar cosPhi = hsCosine(phi);
hsScalar sinPhi = hsSine(phi);
pt.fX = center.fX + radius * sinPhi * cosTheta;
pt.fY = center.fY + radius * sinPhi * sinTheta;
pt.fZ = center.fZ + radius * cosPhi;
tMesh->SetPoint(j + i * nLati, &pt);
}
}
hsTriangle3* tri;
int nTris = 0;
int iNext;
for( i = 0; i < nLong; i++ )
{
if( (iNext = i + 1) >= nLong )
iNext = 0;
tri = tMesh->GetTriFromPool(nTris);
tri->Zero();
tri->fFlags |= hsTriangle3::kTwoSided;
tMesh->SetTriangle(nTris++, tri);
tri->SetQuickMeshVerts(i * nLati, iNext * nLati, iNorthPole);
tri = tMesh->GetTriFromPool(i);
tri->Zero();
tri->fFlags |= hsTriangle3::kTwoSided;
tMesh->SetTriangle(nTris++, tri);
tri->SetQuickMeshVerts(nLati-1 + iNext * nLati, nLati-1 + i * nLati, iSouthPole);
int jNext;
for( j = 0; j < nLati-1; j++ )
{
jNext = j + 1;
tri = tMesh->GetTriFromPool(nTris);
tri->Zero();
tri->fFlags |= hsTriangle3::kTwoSided;
tMesh->SetTriangle(nTris++, tri);
tri->SetQuickMeshVerts(j + i * nLati, j + iNext * nLati, jNext + i * nLati);
tri = tMesh->GetTriFromPool(nTris);
tri->Zero();
tri->fFlags |= hsTriangle3::kTwoSided;
tMesh->SetTriangle(nTris++, tri);
tri->SetQuickMeshVerts(jNext + iNext * nLati, jNext + i * nLati, j + iNext * nLati);
}
}
}
//
// Allocate and create mesh from bounding box
//
void hsBounds3::MakeTriMesh(hsGTriMesh* tMesh, UInt32 triFlags, hsPoint3* cornersIn) const
{
hsAssert(cornersIn || fType == kBoundsNormal,
"Invalid bounds type for hsBounds3::MakeTriMesh ");
const int maxNew= 12;
// Setup tMesh
tMesh->AllocatePointers(maxNew /*faces*/, 8 /*pts*/, 0 /*uvs*/, 0 /*colors*/);
tMesh->SetNumTriVertex(8);
int i;
hsPoint3 corners[8];
// Set Points
if( !cornersIn )
{
GetCorners(corners);
cornersIn = corners;
}
for(i=0; i<8; i++)
{
tMesh->SetPoint(i, &cornersIn[i]);
}
tMesh->GetVertexPool()->SetCount(8);
// Set faces
hsTriangle3 *tri;
int triNum=0;
static int verts[maxNew * 3] = {
/* -Y */ 6,2,3,
/* -Y */ 6,3,7,
/* Y */ 5,1,0,
/* Y */ 5,0,4,
/* -X */ 7,3,1,
/* -X */ 7,1,5,
/* X */ 4,0,2,
/* X */ 4,2,6,
/* Z */ 3,0,1,
/* Z */ 3,2,0,
/* -Z */ 7,4,6,
/* -Z */ 7,5,4
};
int v=0;
for (;triNum < maxNew;triNum++)
{
tri = tMesh->GetTriFromPool(triNum);
tri->Zero();
tri->fFlags |= triFlags;
tMesh->SetTriangle(triNum, tri);
tri->SetQuickMeshVerts(verts[v + 0],verts[v + 1],verts[v + 2]);
v += 3;
}
tMesh->SetTrianglePointers();
}
#endif // MESH_GEN_DEFER
void hsBounds3::TestPlane(const hsPlane3 *p, hsPoint2 &depth) const
{
TestPlane(p->fN, depth);
}
void hsBounds3::TestPlane(const hsVector3 &n, hsPoint2 &depth) const
{
hsAssert(fType == kBoundsNormal, "TestPlane only valid for kBoundsNormal filled bounds");
hsScalar dmax = fMins.InnerProduct(n);
hsScalar dmin = dmax;
int i;
for( i = 0; i < 3; i++ )
{
hsScalar dd;
dd = fMaxs[i] - fMins[i];
dd *= n[i];
if( dd < 0 )
dmin += dd;
else
dmax += dd;
}
depth.fX = dmin;
depth.fY = dmax;
}
hsScalar hsBounds3::ClosestPointToLine(const hsPoint3 *p, const hsPoint3 *v0, const hsPoint3 *v1, hsPoint3 *out)
{
hsVector3 del(v1, v0);
hsScalar magSq = del.MagnitudeSquared();
hsScalar t = 0.f;
if( magSq < hsBounds::kRealSmall )
{
*out = *v0;
}
else
{
t = del.InnerProduct(hsVector3(p, v0)) * hsScalarInvert(magSq);
if( t >= hsScalar1 )
*out = *v1;
else if( t <= 0 )
*out = *v0;
else
*out = *v0 + del * t;
}
return t;
}
hsScalar hsBounds3::ClosestPointToInfiniteLine(const hsPoint3* p, const hsVector3* v, hsPoint3* out)
{
hsScalar magSq = v->MagnitudeSquared();
hsScalar t = 0.f;
hsPoint3 origin(0,0,0);
if( magSq < hsBounds::kRealSmall )
{
*out = origin;
}
else
{
t = v->InnerProduct(hsVector3(*p)) * hsScalarInvert(magSq);
*out = hsPoint3(*v * t);
}
return t;
}
hsBool hsBounds3::ClosestPoint(const hsPoint3& p, hsPoint3& inner, hsPoint3& outer) const
{
// Look for axis intervals p is within
int nSect = 0;
int i;
for( i = 0; i < 3; i++ )
{
if( p[i] < fMins[i] )
{
inner[i] = fMins[i];
outer[i] = fMaxs[i];
}
else if( p[i] > fMaxs[i] )
{
inner[i] = fMaxs[i];
outer[i] = fMins[i];
}
else
{
inner[i] = p[i];
outer[i] = (p[i] - fMins[i] > fMaxs[i] - p[i]) ? fMins[i] : fMaxs[i];
nSect++;
}
}
return nSect == 3;
}
void hsBounds3::Read(hsStream *stream)
{
hsBounds::Read(stream);
fMins.Read(stream);
fMaxs.Read(stream);
fBounds3Flags = 0;
}
void hsBounds3::Write(hsStream *stream)
{
hsBounds::Write(stream);
fMins.Write(stream);
fMaxs.Write(stream);
}
//////////////////////////////////
//////////////////////////////////////////////////
// Plane Bounds util class
//////////////////////////////////////////////////
hsPoint3 hsBoundsOriented::GetCenter() const
{
hsAssert(fCenterValid==true, "Unset center for hsBoundsOriented::GetCenter()");
return fCenter;
}
void hsBoundsOriented::TestPlane(const hsVector3 &n, hsPoint2 &depth) const
{
hsAssert(false, "TestPlane not a valid operation for hsBounsOriented");
}
//
// Return true if inside all the planes
//
hsBool hsBoundsOriented::IsInside(const hsPoint3* pos) const
{
hsAssert(fType == kBoundsNormal, "Invalid bounds type for hsBounds3::IsInside() ");
if(fType == kBoundsEmpty)
return false;
if(fType == kBoundsFull)
return true;
int i;
for( i = 0; i < fNumPlanes; i++ )
{
hsScalar dis = fPlanes[i].fN.InnerProduct(pos);
dis += fPlanes[i].fD;
if( dis > 0.f )
return false;
}
return true;
}
void hsBoundsOriented::SetNumberPlanes(UInt32 n)
{
delete [] fPlanes;
fPlanes = TRACKED_NEW hsPlane3[fNumPlanes = n];
}
void hsBoundsOriented::SetPlane(UInt32 i, hsPlane3 *pln)
{
fType = kBoundsNormal;
if( i >= fNumPlanes )
{
hsPlane3 *newPlanes = TRACKED_NEW hsPlane3[i+1];
if( fPlanes )
{
int k;
for( k = 0; k < fNumPlanes; k++ )
*newPlanes++ = *fPlanes++;
delete [] fPlanes;
}
fPlanes = newPlanes;
fNumPlanes = i+1;
}
fPlanes[i] = *pln;
}
//
// Make mesh from bounds3. Make boundsOriented from mesh tris.
//
void hsBoundsOriented::Reset(const hsBounds3* bounds)
{
#if 0 // MESH_GEN_DEFER
hsGTriMesh tMesh;
bounds->MakeTriMesh(&tMesh, 0 /* triFlags */);
Reset(&tMesh);
#endif // MESH_GEN_DEFER
}
#if 0
//
// Make mesh from bounds3. Make boundsOriented from mesh tris.
//
void hsBoundsOriented::Union(const hsBounds3 *b)
{
#if 0 // MESH_GEN_DEFER
hsGTriMesh tMesh;
bounds->MakeTriMesh(&tMesh);
int i;
hsTriangle3 tri;
for (i=0; i<tMesh.GetNumTriangles(); i++)
{
tMesh.GetTriangle(i, &tri);
Union(&tri);
}
#endif // MESH_GEN_DEFER
}
#endif
//
//
//
void hsBoundsOriented::Reset(hsGTriMesh *tMesh)
{
#if 0 // MESH_GEN_DEFER
const float OBJCVT_ABOUT_ZERO = 1.0e-4f;
const float OBJCVT_ABOUT_ONE = 1.0f - OBJCVT_ABOUT_ZERO;
hsPlane3 *planes = TRACKED_NEW hsPlane3[tMesh->GetNumTriangles()];
UInt32 nPlanes = 0;
int i;
for( i = 0; i < tMesh->GetNumTriangles(); i++ )
{
hsTriangle3 *tri;
tri = tMesh->GetTriangle(i);
hsPlane3 pln;
tri->ComputePlane(&pln);
hsScalar norm = hsFastMath::InvSqrRoot(pln.fN.MagnitudeSquared());
pln.fN *= norm;
int j;
for( j = 0; j < nPlanes; j++ )
{
if( (pln.fN.InnerProduct(planes[j].fN)> OBJCVT_ABOUT_ONE)
&&((pln.fD/planes[j].fD) >= 1.0-OBJCVT_ABOUT_ZERO)
&&((pln.fD/planes[j].fD) <= 1.0+OBJCVT_ABOUT_ZERO) )
break;
}
if( j == nPlanes )
planes[nPlanes++] = pln;
}
SetNumberPlanes(nPlanes);
for( i = 0; i < nPlanes; i++ )
SetPlane(i, planes+i);
delete [] planes;
// Compute center
hsPoint3 centroid(0,0,0);
for(i=0; i<tMesh->GetNumPoints(); i++)
{
centroid = centroid + *tMesh->GetPoint(i);
}
centroid = centroid / (hsScalar)tMesh->GetNumPoints();
SetCenter(&centroid);
#endif // MESH_GEN_DEFER
}
void hsBoundsOriented::Write(hsStream *stream)
{
hsBounds::Write(stream);
fCenter.Write(stream);
stream->WriteSwap32(fCenterValid);
stream->WriteSwap32(fNumPlanes);
int i;
for( i = 0; i < fNumPlanes; i++ )
{
fPlanes[i].Write(stream);
}
}
void hsBoundsOriented::Read(hsStream *stream)
{
hsBounds::Read(stream);
fCenter.Read(stream);
fCenterValid = (hsBool)stream->ReadSwap32();
fNumPlanes = stream->ReadSwap32();
if (fPlanes)
delete [] fPlanes;
fPlanes = TRACKED_NEW hsPlane3[fNumPlanes];
int i;
for( i = 0; i < fNumPlanes; i++ )
{
fPlanes[i].Read(stream);
}
}
///////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////
hsBounds3Ext::hsBounds3Ext(const hsBounds3 &b)
{
Reset(&b);
}
hsBounds3Ext &hsBounds3Ext::operator=(const hsBounds3 &b)
{
Reset(&b);
return *this;
}
void hsBounds3Ext::IMakeMinsMaxs()
{
hsAssert(!(fExtFlags & kAxisAligned), "Axis aligned box defined by min and max");
fMins = fMaxs = fCorner;
int i;
for( i = 0; i < 3; i++ )
{
if(!IAxisIsZero(i) )
{
int j;
for( j = 0; j < 3; j++ )
{
if( fAxes[i][j] < 0 )
fMins[j] += fAxes[i][j];
else
fMaxs[j] += fAxes[i][j];
}
}
}
}
void hsBounds3Ext::IMakeDists() const
{
hsAssert(!(fExtFlags & kAxisAligned), "Dists only useful for transformed BB");
int i;
for( i = 0; i < 3; i++ )
{
fDists[i].fX = fCorner.InnerProduct(fAxes[i]);
if( !IAxisIsZero(i) )
{
fDists[i].fY = fDists[i].fX + fAxes[i].InnerProduct(fAxes[i]);
if( fDists[i].fX > fDists[i].fY )
{
hsScalar t = fDists[i].fX;
fDists[i].fX = fDists[i].fY;
fDists[i].fY = t;
}
}
else
fDists[i].fY = fDists[i].fX;
}
fExtFlags |= kDistsSet;
}
void hsBounds3Ext::IMakeSphere() const
{
if(!(fBounds3Flags & kCenterValid) )
ICalcCenter();
if( fExtFlags & kAxisAligned )
{
if( fBounds3Flags & kIsSphere )
{
fRadius = fMaxs[0] - fMins[0];
int i;
for( i = 1; i < 3; i++ )
{
hsScalar dist = fMaxs[i] - fMins[i];
if( dist < fRadius )
fRadius = dist;
}
fRadius *= 0.5f;
}
else
{
fRadius = hsSquareRoot(hsVector3(&fMaxs, &fCenter).MagnitudeSquared());
}
}
else
{
if( fBounds3Flags & kIsSphere )
{
hsScalar minMagSq = fAxes[0].MagnitudeSquared();
hsScalar magSq = fAxes[1].MagnitudeSquared();
if( magSq < minMagSq )
magSq = minMagSq;
magSq = fAxes[2].MagnitudeSquared();
if( magSq < minMagSq )
magSq = minMagSq;
fRadius = hsSquareRoot(magSq);
}
else
{
hsVector3 accum;
accum.Set(0,0,0);
int i;
for( i = 0; i < 3; i++ )
{
if( !IAxisIsZero(i) )
accum += fAxes[i];
}
fRadius = hsSquareRoot((accum * 0.5f).MagnitudeSquared());
}
}
fExtFlags |= kSphereSet;
}
void hsBounds3Ext::Reset(const hsBounds3 *b)
{
fExtFlags = kAxisAligned;
hsBounds3::Reset(b);
}
void hsBounds3Ext::Reset(const hsPoint3 *p)
{
fExtFlags = kAxisAligned | kSphereSet;
hsBounds3::Reset(p);
fRadius = 0;
}
void hsBounds3Ext::Reset(const hsBounds3Ext *b)
{
hsBounds3::Reset(b);
fExtFlags = b->fExtFlags;
if (!(fExtFlags & kAxisAligned))
{
fCorner = b->fCorner;
fAxes[0] = b->fAxes[0];
fAxes[1] = b->fAxes[1];
fAxes[2] = b->fAxes[2];
}
if (fExtFlags & kDistsSet)
{
fDists[0] = b->fDists[0];
fDists[1] = b->fDists[1];
fDists[2] = b->fDists[2];
}
if (fExtFlags & kSphereSet)
fRadius = b->fRadius;
}
void hsBounds3Ext::GetCorners(hsPoint3 *b) const
{
if( fExtFlags & kAxisAligned )
{
hsBounds3::GetCorners(b);
}
else
{
int i;
for( i = 0; i < 8; i++ )
{
b[i] = fCorner;
if( !(i & 0x1) && !(fExtFlags & kAxisZeroZero) )b[i] += fAxes[0];
if( !(i & 0x2) && !(fExtFlags & kAxisOneZero) )b[i] += fAxes[1];
if( !(i & 0x4) && !(fExtFlags & kAxisTwoZero) )b[i] += fAxes[2];
}
}
}
void hsBounds3Ext::GetAxes(hsVector3 *fAxis0, hsVector3 *fAxis1, hsVector3 *fAxis2) const
{
if( !(fExtFlags & kAxisAligned) )
{
*fAxis0 = fAxes[0];
*fAxis1 = fAxes[1];
*fAxis2 = fAxes[2];
}
else
{
fAxis0->Set(fMaxs.fX - fMins.fX, 0, 0);
fAxis1->Set(0, fMaxs.fY - fMins.fY, 0);
fAxis2->Set(0, 0, fMaxs.fZ - fMins.fZ);
}
}
void hsBounds3Ext::Reset(int n, const hsPoint3 *p)
{
fExtFlags = kAxisAligned;
hsBounds3::Reset(n, p);
}
// mf horse - could union in a point preserving axes...
void hsBounds3Ext::Union(const hsPoint3 *p)
{
fExtFlags = kAxisAligned;
hsBounds3::Union(p);
}
void hsBounds3Ext::Union(const hsVector3 *v)
{
#if 0 // smarter union
fExtFlags = kAxisAligned;
hsBounds3::Union(v);
#else // smarter union
if( fExtFlags & kAxisAligned )
{
hsBounds3::Union(v);
}
else
{
int i;
for( i = 0; i < 3; i++ )
{
hsScalar dot = fAxes[i].InnerProduct(v);
dot /= fAxes[i].MagnitudeSquared();
if( dot > 0 )
{
fAxes[i] += dot * fAxes[i];
fExtFlags &= ~(1 << (20+i)); // axis not zero no more
}
else if( dot < 0 )
{
hsVector3 del = dot * fAxes[i];
fCorner += del;
del = -del;
fAxes[i] += del;
fExtFlags &= ~(1 << (20+i)); // axis not zero no more
}
}
fExtFlags &= ~(kSphereSet | kDistsSet);
fBounds3Flags &= ~kCenterValid;
}
#endif // smarter union
}
void hsBounds3Ext::Union(const hsBounds3 *b)
{
fExtFlags = kAxisAligned;
hsBounds3::Union(b);
}
void hsBounds3Ext::MakeSymmetric(const hsPoint3* p)
{
if( fType != kBoundsNormal )
return;
if( fExtFlags & kAxisAligned )
{
fExtFlags = kAxisAligned;
hsBounds3::MakeSymmetric(p);
return;
}
// Can do this preserving axes, but may not be worth it.
fExtFlags = kAxisAligned;
hsBounds3::MakeSymmetric(p);
}
void hsBounds3Ext::InscribeSphere()
{
fBounds3Flags |= kIsSphere;
fExtFlags |= kAxisAligned;
IMakeSphere();
return;
#if 0
if( fType != kBoundsNormal )
return;
if( fExtFlags & kAxisAligned )
{
hsBounds3::InscribeSphere();
return;
}
const hsScalar oneThird = hsScalarInvert(3.f);
// hsScalar a = GetMaxDim() * hsScalarInvert(6.f);
hsScalar a = GetRadius() * oneThird;
hsPoint3 p = GetCenter();
p.fX += a;
p.fY += a;
p.fZ += a;
fMaxs = p;
a *= -2.f;
p.fX += a;
p.fY += a;
p.fZ += a;
fMins = p;
// Center still valid, type still normal
fExtFlags = kAxisAligned;
#endif
}
void hsBounds3Ext::Transform(const hsMatrix44 *m)
{
if( fType != kBoundsNormal )
return;
if( fExtFlags & kAxisAligned )
{
fExtFlags = 0;
fCorner = *m * fMins;
hsVector3 v;
hsScalar span;
span = fMaxs.fX - fMins.fX;
if( span < kRealSmall )
{
fExtFlags |= kAxisZeroZero;
span = hsScalar1;
}
v.Set(span, 0, 0);
fAxes[0] = *m * v;
span = fMaxs.fY - fMins.fY;
if( span < kRealSmall )
{
fExtFlags |= kAxisOneZero;
span = hsScalar1;
}
v.Set(0, span, 0);
fAxes[1] = *m * v;
span = fMaxs.fZ - fMins.fZ;
if( span < kRealSmall )
{
fExtFlags |= kAxisTwoZero;
span = hsScalar1;
}
v.Set(0, 0, span);
fAxes[2] = *m * v;
}
else
{
#if 0 // IDENT
if( m->fFlags & hsMatrix44::kIsIdent )
return;
#endif // IDENT
fCorner = *m * fCorner;
fAxes[0] = *m * fAxes[0];
fAxes[1] = *m * fAxes[1];
fAxes[2] = *m * fAxes[2];
fExtFlags &= kAxisZeroZero|kAxisOneZero|kAxisTwoZero;
}
IMakeMinsMaxs();
fBounds3Flags &= ~kCenterValid;
}
void hsBounds3Ext::Translate(const hsVector3 &v)
{
if( fType != kBoundsNormal )
return;
fMins += v;
fMaxs += v;
if( fBounds3Flags & kCenterValid )
fCenter += v;
if( !(fExtFlags & kAxisAligned) )
{
fCorner += v;
int i;
for( i = 0; i < 3; i++ )
{
hsScalar d;
d = fAxes[i].InnerProduct(v);
fDists[i].fX += d;
fDists[i].fY += d;
}
}
}
hsBool hsBounds3Ext::IsInside(const hsPoint3 *p) const
{
if( fExtFlags & kAxisAligned )
return hsBounds3::IsInside(p);
if( !(fExtFlags & kDistsSet) )
IMakeDists();
int i;
for( i = 0; i < 3; i++ )
{
hsScalar diss = p->InnerProduct(fAxes[i]);
if( (diss < fDists[i].fX)
||(diss > fDists[i].fY) )
return false;
}
return true;
}
// neg, pos, zero == disjoint, I contain other, overlap
Int32 hsBounds3Ext::TestBound(const hsBounds3Ext& other) const
{
if( fExtFlags & kAxisAligned )
return hsBounds3::TestBound(other);
if( !(fExtFlags & kDistsSet) )
IMakeDists();
Int32 retVal = 1;
int i;
for( i = 0; i < 3; i++ )
{
hsPoint2 depth;
other.TestPlane(fAxes[i], depth);
if( fDists[i].fX > depth.fY )
return -1;
if( fDists[i].fY < depth.fX )
return -1;
if( fDists[i].fY < depth.fY )
retVal = 0;
if( fDists[i].fX > depth.fX )
retVal = 0;
}
return retVal;
}
void hsBounds3Ext::TestPlane(const hsVector3 &n, hsPoint2 &depth) const
{
hsAssert(fType == kBoundsNormal, "TestPlane only valid for kBoundsNormal filled bounds");
if( fExtFlags & kAxisAligned )
{
hsBounds3::TestPlane(n, depth);
}
else
{
hsScalar dmax = fCorner.InnerProduct(n);
hsScalar dmin = dmax;
int i;
for( i = 0; i < 3; i++ )
{
if( !IAxisIsZero(i) )
{
hsScalar d;
d = fAxes[i].InnerProduct(n);
if( d < 0 )
dmin += d;
else
dmax += d;
}
}
depth.fX = dmin;
depth.fY = dmax;
}
}
void hsBounds3Ext::TestPlane(const hsPlane3 *p, const hsVector3 &myVel, hsPoint2 &depth) const
{
TestPlane(p->fN, myVel, depth);
}
void hsBounds3Ext::TestPlane(const hsVector3 &n, const hsVector3 &myVel, hsPoint2 &depth) const
{
if( fExtFlags & kAxisAligned )
{
hsScalar dmax = fMins.InnerProduct(n);
hsScalar dmin = dmax;
hsScalar dvel = myVel.InnerProduct(n);
if( dvel < 0 )
dmin += dvel;
else
dmax += dvel;
int i;
for( i = 0; i < 3; i++ )
{
hsScalar dd;
dd = fMaxs[i] - fMins[i];
dd *= n[i];
if( dd < 0 )
dmin += dd;
else
dmax += dd;
}
depth.fX = dmin;
depth.fY = dmax;
}
else
{
hsScalar dmax = fCorner.InnerProduct(n);
hsScalar dmin = dmax;
hsScalar dvel = myVel.InnerProduct(n);
if( dvel < 0 )
dmin += dvel;
else
dmax += dvel;
int i;
for( i = 0; i < 3; i++ )
{
if( !IAxisIsZero(i) )
{
hsScalar d;
d = fAxes[i].InnerProduct(n);
if( d < 0 )
dmin += d;
else
dmax += d;
}
}
depth.fX = dmin;
depth.fY = dmax;
}
}
Int32 hsBounds3Ext::TestPoints(int n, const hsPoint3 *pList, const hsVector3 &ptVel) const
{
if( fExtFlags & kAxisAligned )
{
Int32 retVal = -1;
int i;
for( i = 0; i < 3; i++ )
{
hsScalar effMax = fMaxs[i];
hsScalar effMin = fMins[i];
if( ptVel[i] < 0 )
effMax -= ptVel[i];
else
effMin -= ptVel[i];
int j;
const UInt32 low = 0x1, hi = 0x2;
UInt32 mask = low | hi;
for( j = 0; j < n; j++ )
{
if( pList[j][i] > effMin )
mask &= ~low;
if( pList[j][i] < effMax )
mask &= ~hi;
if( mask )
retVal = 0;
}
if( mask )
return 1;
}
return retVal;
}
else // non-axis aligned case
{
Int32 retVal = -1; // all inside
if( !(fExtFlags & kDistsSet) )
IMakeDists();
int i;
for( i = 0; i < 3; i++ )
{
hsScalar diff = fAxes[i].InnerProduct(ptVel);
hsBool someLow = false;
hsBool someHi = false;
hsBool someIn = false;
int j;
for( j = 0; j < n; j++ )
{
hsScalar d = fAxes[i].InnerProduct(pList[j]);
hsScalar ddiff = d + diff;
if( d < fDists[i].fX )
someLow = true;
else if( d > fDists[i].fY )
someHi = true;
else
someIn = true;
if( ddiff < fDists[i].fX )
someLow = true;
else if( ddiff > fDists[i].fY )
someHi = true;
else
someIn = true;
if( someIn &&(someHi || someLow) )
break;
}
if( someHi && !(someLow || someIn) )
return 1;
if( someLow && !(someHi || someIn) )
return 1;
if( someHi || someLow )
retVal = 0;
}
return retVal;
}
}
Int32 hsBounds3Ext::TestPoints(int n, const hsPoint3 *pList) const
{
hsBool someIn = false;
hsBool someOut = false;
int i;
for( i = 0; i < n; i++ )
{
if( IsInside(pList+i) )
someIn = true;
else
someOut = true;
if( someIn && someOut )
return 0;
}
if( someIn )
return -1;
return 1;
}
hsBool hsBounds3Ext::ClosestPoint(const hsPoint3& p, hsPoint3& inner, hsPoint3& outer) const
{
if( fExtFlags & kAxisAligned )
return hsBounds3::ClosestPoint(p, inner, outer);
if( !(fExtFlags & kDistsSet) )
IMakeDists();
int nSect = 0;
inner = outer = fCorner;
int i;
for( i = 0; i < 3; i++ )
{
hsScalar dist = fAxes[i].InnerProduct(p);
if( dist < fDists[i].fX )
{
outer += fAxes[i];
}
else if( dist > fDists[i].fY )
{
inner += fAxes[i];
}
else
{
hsScalar t = (dist - fDists[i].fX) / (fDists[i].fY - fDists[i].fX);
inner += t * fAxes[i];
if( t > 0.5f )
outer += fAxes[i];
nSect++;
}
}
return nSect == 3;
}
hsBool hsBounds3Ext::ISectBB(const hsBounds3Ext &other, const hsVector3 &myVel) const
{
if( fExtFlags & kAxisAligned )
{
if( other.fExtFlags & kAxisAligned )
return ISectABB(other, myVel);
return other.ISectBB(*this, -myVel);
}
hsAssert(!(fExtFlags & kAxisAligned), "Other can be axis-aligned, but not me!");
hsPoint2 depth;
if( !(fExtFlags & kDistsSet) )
IMakeDists();
if( !(other.fExtFlags & (kDistsSet|kAxisAligned)) )
other.IMakeDists();
int i;
for( i = 0; i < 3; i++ )
{
other.TestPlane(fAxes[i], -myVel, depth);
if( (depth.fX > fDists[i].fY)
||(depth.fY < fDists[i].fX) )
return false;
if( other.fExtFlags & kAxisAligned )
{
hsScalar myMin = fMins[i];
hsScalar myMax = fMaxs[i];
if( myVel[i] < 0 )
myMin += myVel[i];
else
myMax += myVel[i];
if( (other.fMins[i] > myMax)
||(other.fMaxs[i] < myMin) )
return false;
}
else
{
TestPlane(other.fAxes[i], myVel, depth);
if( (depth.fX > other.fDists[i].fY)
||(depth.fY < other.fDists[i].fX) )
return false;
}
// still leaves the 3 axes of origAxis.Cross(myVel)
hsVector3 ax = fAxes[i] % myVel;
hsScalar dmax = fCorner.InnerProduct(ax);
hsScalar dmin = dmax;
int j = i+1;
if( 3 == j )j = 0;
hsScalar d;
d = fAxes[j].InnerProduct(ax);
if( d < 0 )
dmin += d;
else
dmax += d;
j = ( j == 2 ? 0 : j+1 );
d = fAxes[j].InnerProduct(ax);
if( d < 0 )
dmin += d;
else
dmax += d;
other.TestPlane(ax, depth);
if( (depth.fX > dmax)
||(depth.fY < dmin) )
return false;
}
return true;
}
static hsBool ISectInterval(const hsPoint2& other, const hsPoint2& mine)
{
if( other.fY - mine.fX <= 0 )
return false;
if( mine.fY - other.fX <= 0 )
return false;
return true;
}
static hsBool ITestDepth(const hsPoint2& other, const hsPoint2& mine,
const hsVector3& inAx,
hsVector3 &outAx, hsScalar& depth)
{
depth = 0;
hsScalar d0, d1;
d0 = other.fY - mine.fX;
if( d0 <= 0 )
return false;
d1 = mine.fY - other.fX;
if( d1 <= 0 )
return false;
// if one interval is proper subset of other, skip
if( (mine.fX < other.fX)^(mine.fY < other.fY) )
{
depth = 0;
return true;
}
if( d0 < d1 )
{
outAx = inAx;
depth = d0;
return true;
}
outAx = -inAx;
depth = d1;
return true;
}
Int32 hsBounds3Ext::IClosestISect(const hsBounds3Ext& other, const hsVector3& myVel,
hsScalar* tClose, hsScalar* tImpact) const
{
// Should assert both have their spheres set.
hsVector3 meToOt(&other.GetCenter(), &GetCenter());
// cTerm = (myCenter - otCenter)^2 - (myRad + otRad)^2
hsScalar cTerm;
cTerm = GetRadius() + other.GetRadius();
cTerm *= -cTerm;
hsScalar meToOtLen = meToOt.MagnitudeSquared();
cTerm += meToOtLen;
if( cTerm <= 0 )
{
*tClose = *tImpact = 0;
return -1; // started off in contact
}
hsScalar ooATerm = myVel.InnerProduct(myVel);
if( ooATerm < hsBounds::kRealSmall )
{
*tClose = *tImpact = 0;
return 0;
}
ooATerm = hsScalarInvert(ooATerm);
hsScalar bTerm = myVel.InnerProduct(meToOt);
bTerm *= ooATerm;
hsScalar bSqTerm = bTerm * bTerm;
// bTerm is t for closest point to line
hsScalar det = bSqTerm - ooATerm * cTerm;
if( det < 0 )
{
*tClose = *tImpact = bTerm;
return 0;
}
det = hsSquareRoot(det);
*tClose = bTerm;
*tImpact = bTerm - det;
return 1;
}
void hsBounds3Ext::Unalign()
{
fExtFlags = 0;
fCorner = fMins;
hsVector3 v;
hsScalar span;
span = fMaxs.fX - fMins.fX;
if( span < kRealSmall )
{
fExtFlags |= kAxisZeroZero;
span = hsScalar1;
}
fAxes[0].Set(span, 0, 0);
span = fMaxs.fY - fMins.fY;
if( span < kRealSmall )
{
fExtFlags |= kAxisOneZero;
span = hsScalar1;
}
fAxes[1].Set(0, span, 0);
span = fMaxs.fZ - fMins.fZ;
if( span < kRealSmall )
{
fExtFlags |= kAxisTwoZero;
span = hsScalar1;
}
fAxes[2].Set(0, 0, span);
}
hsBool hsBounds3Ext::ISectBB(const hsBounds3Ext &other, const hsVector3 &myVel, hsHitInfoExt *hit) const
{
if( fExtFlags & kAxisAligned )
{
hsBounds3Ext meUnalign(*this);
meUnalign.Unalign();
return meUnalign.ISectBB(other, myVel, hit);
}
hsAssert(!(fExtFlags & kAxisAligned), "Other can be axis-aligned, but not me!");
hsPoint2 depth;
if( !(fExtFlags & kDistsSet) )
IMakeDists();
if( !(other.fExtFlags & (kDistsSet|kAxisAligned)) )
other.IMakeDists();
const hsScalar kRealBig = 1.e30f;
hsScalar tstDepths[9];
hsVector3 tstAxes[9];
hsScalar totDepth = 0;
int nDeep = 0;
int i;
for( i = 0; i < 3; i++ )
{
const hsScalar kFavorConstant = 0.01f; // smaller is favored
other.TestPlane(fAxes[i], -myVel, depth);
if( !ITestDepth(depth, fDists[i], fAxes[i], tstAxes[i], tstDepths[i]) )
return false;
other.TestPlane(fAxes[i], depth);
if( !ISectInterval(depth, fDists[i]) )
tstDepths[i] *= kFavorConstant;
if( tstDepths[i] > 0 )
{
totDepth += tstDepths[i];
nDeep++;
}
if( other.fExtFlags & kAxisAligned )
{
hsPoint2 mine;
mine.fX = fMins[i];
mine.fY = fMaxs[i];
if( myVel[i] > 0 )mine.fY += myVel[i];
else mine.fX += myVel[i];
depth.fX = other.fMins[i];
depth.fY = other.fMaxs[i];
hsVector3 ax;
ax.Set( 0 == i ? hsScalar1 : 0,
1 == i ? hsScalar1 : 0,
2 == i ? hsScalar1 : 0);
if( !ITestDepth(depth, mine, ax, tstAxes[i+3], tstDepths[i+3]) )
return false;
mine.fX = fMins[i];
mine.fY = fMaxs[i];
if( !ISectInterval(depth, mine) )
tstDepths[i+3] *= kFavorConstant;
if( tstDepths[i+3] )
{
totDepth += tstDepths[i+3];
nDeep++;
}
}
else
{
TestPlane(other.fAxes[i], myVel, depth);
if( !ITestDepth(other.fDists[i], depth, other.fAxes[i], tstAxes[i+3], tstDepths[i+3]) )
return false;
TestPlane(other.fAxes[i], depth);
if( !ISectInterval(other.fDists[i], depth) )
tstDepths[i+3] *= kFavorConstant;
if( tstDepths[i+3] )
{
totDepth += tstDepths[i+3];
nDeep++;
}
}
#if 0
// still leaves the 3 axes of origAxis.Cross(myVel)
hsVector3 ax = fAxes[i] % myVel;
if( ax.MagnitudeSquared() > kRealSmall )
{
hsPoint2 myDepth;
myDepth.fX = myDepth.fY = fCorner.InnerProduct(ax);
hsScalar d;
int j = i == 2 ? 0 : i+1;
if( !IAxisIsZero(j) )
{
d = fAxes[j].InnerProduct(ax);
if( d < 0 )
myDepth.fX += d;
else
myDepth.fY += d;
}
j = ( j == 2 ? 0 : j+1 );
if( !IAxisIsZero(j) )
{
d = fAxes[j].InnerProduct(ax);
if( d < 0 )
myDepth.fX += d;
else
myDepth.fY += d;
}
other.TestPlane(ax, depth);
if( !ITestDepth(depth, myDepth, ax, tstAxes[i+6], tstDepths[i+6]) )
return false;
totDepth += tstDepths[i+6];
}
else
tstDepths[i+6] = 0;
#endif
}
hsVector3 norm;
if( totDepth <= 0 )
{
hsScalar t, tIgnore;
IClosestISect(other, myVel, &tIgnore, &t);
if( t < 0 )
t = 0;
else if( t > 1.f )
t = 1.f;
hsPoint3 hitPt = GetCenter() + myVel * t;
norm.Set(&hitPt, &other.GetCenter());
}
else
{
// now do a weighted average of the axes
hsAssert(totDepth > 0, "nobody home");
norm.Set(0,0,0);
for( i =0; i < 6; i++ )
{
if( tstDepths[i] > 0 )
norm += tstAxes[i] / tstDepths[i];
// norm += tstAxes[i] * (1.f - tstDepths[i] / totDepth);
}
}
hsPoint2 otherDepth;
norm.Normalize();
other.TestPlane(norm, otherDepth);
TestPlane(norm, myVel, depth);
hit->Set(this, &other, norm, otherDepth.fY - depth.fX);
// mf horse hack test
if( hit->fDepth < 0 )
return false;
hsAssert(hit->fDepth >= 0, "Negative Depth");
return true;
}
hsBool hsBounds3Ext::ISectABB(const hsBounds3Ext &other, const hsVector3 &myVel) const
{
hsPoint3 effMaxs = fMaxs;
hsPoint3 effMins = fMins;
int i;
for( i = 0; i < 3; i++ )
{
hsScalar effMax = fMaxs[i];
hsScalar effMin = fMins[i];
if( myVel[i] > 0 )
effMax += myVel[i];
else
effMin += myVel[i];
if( (effMax < other.fMins[i])
||(effMin > other.fMaxs[i]) )
return false;
}
return true;
}
hsBool hsBounds3Ext::ISectBS(const hsBounds3Ext &other, const hsVector3 &myVel) const
{
if( !(fExtFlags & kSphereSet) )
IMakeSphere();
if( !(other.fExtFlags & kSphereSet) )
other.IMakeSphere();
hsPoint3 closestPt = GetCenter();
// we should know whether we have a useful velocity or not...
// having the speed cached away would get rid of several
// such uglies...
if( myVel.MagnitudeSquared() > 0 )
{
hsScalar parm = hsVector3(&other.GetCenter(), &fCenter).InnerProduct(myVel)
/ myVel.InnerProduct(myVel);
if( parm > 0 )
{
if( parm > hsScalar1 )
parm = hsScalar1;
closestPt += myVel * parm;
}
}
hsScalar combRad = fRadius + other.fRadius;
return hsVector3(&closestPt, &other.GetCenter()).MagnitudeSquared() < combRad*combRad;
}
#if 0 // Commenting out this which will be made redundant and/or obsolete by Havok integration
hsBool hsBounds3Ext::ISectTriABB(hsBounds3Tri &tri, const hsVector3 &myVel) const
{
int i;
for( i = 0; i < 3; i++ )
{
hsScalar effMax = fMaxs[i];
hsScalar effMin = fMins[i];
if( myVel[i] < 0 )
effMin += myVel[i];
else
effMax += myVel[i];
int j;
const UInt32 low = 0x1, hi = 0x2;
UInt32 mask = low | hi;
for( j = 0; j < 3; j++ )
{
if( tri.fVerts[j][i] > effMin )
mask &= ~low;
if( tri.fVerts[j][i] < effMax )
mask &= ~hi;
}
if( mask )
return false;
}
return true;
}
hsBool hsBounds3Ext::TriBSHitInfo(hsBounds3Tri& tri, const hsVector3& myVel, hsHitInfoExt* hit) const
{
hsPoint3 myPt = GetCenter();
myPt += myVel;
hsPoint3 closePt;
hsBool onTri = tri.ClosestTriPoint(&myPt, &closePt);
hsVector3 repel;
repel.Set(&myPt, &closePt);
hsScalar myDepth;
hsScalar repelMagSq = repel.MagnitudeSquared();
if( repelMagSq < hsBounds::kRealSmall )
{
repel = tri.fNormal;
myDepth = GetRadius();
}
else
{
myDepth = hsFastMath::InvSqrt(repelMagSq);
repel *= myDepth;
myDepth = 1.f / myDepth;
myDepth = GetRadius() - myDepth;
if( myDepth < 0 )
myDepth = 0;
}
if( tri.fNormal.InnerProduct(myPt) < tri.fDist )
{
repel += tri.fNormal * (-2.f * repel.InnerProduct(tri.fNormal));
myDepth = GetRadius() * 2.f - myDepth;
if( myDepth < 0 )
myDepth = 0;
}
hit->Set(this, &tri, &repel, myDepth);
return true;
}
#if 0 // TOCENTER
hsBool hsBounds3Ext::TriBBHitInfo(hsBounds3Tri& tri, const hsVector3& myVel, hsHitInfoExt* hit) const
{
// Find our closest point (after movement)
hsPoint3 myPt = fCorner;
myPt += myVel;
const hsScalar kMinDist = 1.f; // Huge min dist because world is really big right now. mf horse
int i;
for( i = 0; i < 3; i++ )
{
hsScalar axDot = fAxes[i].InnerProduct(tri.fNormal);
if( axDot < -kMinDist )
{
// moving towards
myPt += fAxes[i];
}
else if( axDot < kMinDist )
{
// need to interp
axDot /= -(kMinDist*2.f);
axDot += 0.5f;
myPt += fAxes[i] * axDot;
}
// else moving away, skip it
}
// Find closest point on tri to our closest corner
hsPoint3 closePt;
hsBool onTri = tri.ClosestTriPoint(&myPt, &closePt);
// Repel vector is from closest corner to closest point on tri
hsVector3 repel;
repel.Set(&myPt, &closePt);
repel += (-2.f * repel.InnerProduct(tri.fNormal)) * tri.fNormal;
hsScalar repelMag = hsFastMath::InvSqrt(repel.MagnitudeSquared());
if( repelMag < hsBounds::kRealSmall )
{
hsPoint2 faceDepth;
TestPlane(tri.fNormal, myVel, faceDepth);
hit->Set(this, &tri, &tri.fNormal, tri.fDist - faceDepth.fX);
return true;
}
repel *= repelMag;
repelMag = 1.f / repelMag;
hit->Set(this, &tri, &repel, repelMag);
// Return true of our closest corner projects on to tri (along normal or myVel?)
return onTri;
}
#else // TOCENTER
hsBool hsBounds3Ext::TriBBHitInfo(hsBounds3Tri& tri, const hsVector3& myVel, hsHitInfoExt* hit) const
{
hsPoint3 myPt = GetCenter();
myPt += myVel;
hsPoint3 closePt;
hsBool onTri = tri.ClosestTriPoint(&myPt, &closePt);
hsVector3 repel;
repel.Set(&myPt, &closePt);
hsScalar repelDotNorm = repel.InnerProduct(tri.fNormal);
if( repelDotNorm < 0 )
{
repel += (-2.f * repelDotNorm) * tri.fNormal;
}
hsScalar repelMagSq = repel.MagnitudeSquared();
if( repelMagSq < hsBounds::kRealSmall )
repel = tri.fNormal;
else
{
hsScalar repelMag = hsFastMath::InvSqrt(repelMagSq);
repel *= repelMag;
}
hsPoint2 triDepth;
tri.TestPlane(repel, triDepth);
hsPoint2 myDepth;
TestPlane(repel, myVel, myDepth);
hit->Set(this, &tri, &repel, triDepth.fY - myDepth.fX);
return true;
}
#endif // TOCENTER
hsBool hsBounds3Ext::ISectTriBB(hsBounds3Tri &tri, const hsVector3 &myVel) const
{
hsPoint2 faceDepth;
// first test box against the triangle plane
TestPlane(tri.fNormal, myVel, faceDepth);
if( (tri.fDist > faceDepth.fY)
||(tri.fDist < faceDepth.fX) )
return false;
// now test tri against box planes
if( TestPoints(3, tri.fVerts, -myVel) > 0 )
return false;
if( !(tri.fTriFlags & hsBounds3Tri::kAxesSet) )
tri.SetAxes();
hsScalar depth = tri.fDist - faceDepth.fX;
hsVector3 norm = tri.fNormal;
// that only leaves the planes of triEdge.Cross(vel)
int i;
for( i = 0; i < 3; i++ )
{
hsPoint2 depths;
TestPlane(tri.fPerpAxes[i], myVel, depths);
if( (tri.fPerpDists[i].fY < depths.fX)
||(tri.fPerpDists[i].fX > depths.fY) )
return false;
#if 0
hsScalar testDepth = tri.fPerpDists[i].fY - depths.fX;
if( testDepth < depth )
{
depth = testDepth;
norm = tri.fPerpAxes[i];
}
#endif
}
hsScalar vDotN = myVel.InnerProduct(tri.fNormal);
if( vDotN > 0 )
depth -= vDotN;
if( depth <= 0 )
return false;
return true;
}
hsBool hsBounds3Ext::ISectTriBB(hsBounds3Tri &tri, const hsVector3 &myVel, hsHitInfoExt *hit) const
{
hsPoint2 faceDepth;
// first test box against the triangle plane
TestPlane(tri.fNormal, myVel, faceDepth);
if( (tri.fDist > faceDepth.fY)
||(tri.fDist < faceDepth.fX) )
return false;
hsScalar centDist = tri.fNormal.InnerProduct(hit->fRootCenter);
if( centDist < tri.fDist )
return false;
// now test tri against box planes
if( TestPoints(3, tri.fVerts, -myVel) > 0 )
return false;
if( !(tri.fTriFlags & hsBounds3Tri::kAxesSet) )
tri.SetAxes();
hsScalar depth = tri.fDist - faceDepth.fX;
hsVector3 norm = tri.fNormal;
// that only leaves the planes of triEdge.Cross(vel)
int i;
for( i = 0; i < 3; i++ )
{
hsPoint2 depths;
TestPlane(tri.fPerpAxes[i], myVel, depths);
if( (tri.fPerpDists[i].fY < depths.fX)
||(tri.fPerpDists[i].fX > depths.fY) )
return false;
#if 0
hsScalar testDepth = tri.fPerpDists[i].fY - depths.fX;
if( testDepth < depth )
{
depth = testDepth;
norm = tri.fPerpAxes[i];
}
#endif
}
hsScalar vDotN = myVel.InnerProduct(tri.fNormal);
if( vDotN > 0 )
depth -= vDotN;
if( (tri.fTriFlags & hsBounds3Tri::kDoubleSide) )
{
if( tri.fNormal.InnerProduct(hit->fRootCenter) - tri.fDist < 0 )
{
depth = -tri.fDist + faceDepth.fY;
if( vDotN < 0 )
depth += vDotN;
tri.fNormal = -tri.fNormal;
tri.fDist = -tri.fDist;
}
}
if( depth <= 0 )
return false;
// printf("ATTRIBUTE triBnd addr %x\n",&tri.fNormal); /* Takashi Nakata TEST Add */
hit->Set(this, &tri, &norm, depth);
return hit->fDepth > hsBounds::kRealSmall;
}
hsBool hsBounds3Ext::ISectTriBS(hsBounds3Tri &tri, const hsVector3 &myVel) const
{
if( !(fExtFlags & kSphereSet) )
IMakeSphere();
hsAssert(fBounds3Flags & kCenterValid, "Sphere set but not center (TriBS)");
hsScalar radScaled = fRadius * tri.fNormal.Magnitude();
hsScalar centerDist = tri.fNormal.InnerProduct(fCenter);
hsScalar velDist = tri.fNormal.InnerProduct(myVel);
hsScalar effMin = centerDist;
hsScalar effMax = centerDist;
if( velDist > 0 )
effMax += velDist;
else
effMin += velDist;
effMax += radScaled;
effMin -= radScaled;
if( tri.fDist <= effMin )
return false;
if( tri.fDist >= effMax )
return false;
// mf horse
hsScalar normDepth = tri.fDist - (centerDist - radScaled + velDist);
if( normDepth <= 0 )
{
// we'll report a depth of zero to (hopefully) neutralize any effects
if( tri.fTriFlags & hsBounds3Tri::kDoubleSide )
{
normDepth = -tri.fDist + (centerDist + radScaled + velDist);
if( normDepth > 0 )
{
tri.fDist = -tri.fDist;
tri.fNormal = -tri.fNormal;
}
else
normDepth = 0;
}
else
normDepth = 0;
}
hsAssert(normDepth >= 0, "NegativeDepth");
if( !(tri.fTriFlags & hsBounds3Tri::kAxesSet) )
tri.SetAxes();
hsAssert(fBounds3Flags & kCenterValid, "Sphere set but not center (TriBS)");
int i;
for( i = 0; i < 3; i++ )
{
centerDist = tri.fPerpAxes[i].InnerProduct(fCenter);
velDist = tri.fPerpAxes[i].InnerProduct(myVel);
effMin = centerDist;
effMax = centerDist;
if( velDist > 0 )
effMax += velDist;
else
effMin += velDist;
hsScalar radScale = fRadius * tri.fPerpAxes[i].Magnitude();
effMax += radScale;
effMin -= radScale;
if( tri.fPerpDists[i].fY <= effMin )
return false;
if( tri.fPerpDists[i].fX >= effMax )
return false;
}
return true;
}
hsBool hsBounds3Ext::ISectTriBS(hsBounds3Tri &tri, const hsVector3 &myVel, hsHitInfoExt *hit) const
{
if( !(fExtFlags & kSphereSet) )
IMakeSphere();
hsAssert(fBounds3Flags & kCenterValid, "Sphere set but not center (TriBS)");
hsScalar radScaled = fRadius * tri.fNormal.Magnitude();
hsScalar centerDist = tri.fNormal.InnerProduct(fCenter);
hsScalar velDist = tri.fNormal.InnerProduct(myVel);
hsScalar effMin = centerDist;
hsScalar effMax = centerDist;
if( velDist > 0 )
effMax += velDist;
else
effMin += velDist;
effMax += radScaled;
effMin -= radScaled;
if( tri.fDist <= effMin )
return false;
if( tri.fDist >= effMax )
return false;
// mf horse
hsScalar normDepth = tri.fDist - (centerDist - radScaled + velDist);
if( normDepth <= 0 )
{
#if 0 // need to report the collision even if the object is leaving the tri
// we'll report a depth of zero to (hopefully) neutralize any effects
if(!(tri.fTriFlags & hsBounds3Tri::kDoubleSide) )
return false;
normDepth = -tri.fDist + (centerDist + radScaled + velDist);
if( normDepth <= 0 )
return false;
tri.fDist = -tri.fDist;
tri.fNormal = -tri.fNormal;
#else
// we'll report a depth of zero to (hopefully) neutralize any effects
if( tri.fTriFlags & hsBounds3Tri::kDoubleSide )
{
normDepth = -tri.fDist + (centerDist + radScaled + velDist);
if( normDepth > 0 )
{
tri.fDist = -tri.fDist;
tri.fNormal = -tri.fNormal;
}
else
normDepth = 0;
}
else
normDepth = 0;
#endif
}
hsAssert(normDepth >= 0, "NegativeDepth");
if( !(tri.fTriFlags & hsBounds3Tri::kAxesSet) )
tri.SetAxes();
hsAssert(fBounds3Flags & kCenterValid, "Sphere set but not center (TriBS)");
int i;
for( i = 0; i < 3; i++ )
{
centerDist = tri.fPerpAxes[i].InnerProduct(fCenter);
velDist = tri.fPerpAxes[i].InnerProduct(myVel);
effMin = centerDist;
effMax = centerDist;
if( velDist > 0 )
effMax += velDist;
else
effMin += velDist;
hsScalar radScale = fRadius * tri.fPerpAxes[i].Magnitude();
effMax += radScale;
effMin -= radScale;
if( tri.fPerpDists[i].fY <= effMin )
return false;
if( tri.fPerpDists[i].fX >= effMax )
return false;
}
hsScalar invLen = hsScalarInvert(tri.fNormal.Magnitude());
hit->Set(this, &tri, &tri.fNormal, normDepth);
// mf horse - move this into Set()?
hit->fNormal *= invLen;
hit->fDepth *= invLen;
return true;
}
#endif // Commenting out this which will be made redundant and/or obsolete by Havok integration
hsBool hsBounds3Ext::ISectBSBS(const hsBounds3Ext& other, const hsVector3& myVel, hsHitInfoExt *hit) const
{
if(!(fExtFlags & kSphereSet) )
IMakeSphere();
if(!(other.fExtFlags & kSphereSet) )
other.IMakeSphere();
hsScalar tClose, tImpact;
if( !IClosestISect(other, myVel, &tClose, &tImpact) )
return false;
if( (tImpact < 0) || (tImpact > 1.f) )
return false;
if( tClose < 0 )
tClose = 0;
if( tClose > 1.f )
tClose = 1.f;
hsPoint3 closePt = GetCenter() + myVel * tClose;
hsVector3 del;
del.Set(&closePt, &other.GetCenter());
hsScalar mag = del.Magnitude();
hsScalar depth = GetRadius() + other.GetRadius() - mag;
if( depth <= 0 )
return false;
hsPoint3 hitPt = GetCenter() + myVel * tImpact;
hsVector3 norm;
norm.Set(&hitPt, &other.GetCenter());
norm.Normalize();
hit->Set(this, &other, norm, depth);
return true;
}
hsBool hsBounds3Ext::ISectBSBox(const hsBounds3Ext &other, const hsVector3 &myVel, hsHitInfoExt *hit) const
{
hit->fDelPos = -myVel;
if( other.ISectBoxBS(*this, hit->fDelPos, hit) )
{
hit->fNormal = -hit->fNormal;
hit->fBoxBnd = this;
hit->fOtherBoxBnd = &other;
hit->fDelPos = myVel;
return true;
}
hit->fDelPos = myVel;
return false;
}
hsBool hsBounds3Ext::ISectBoxBS(const hsBounds3Ext &other, const hsVector3 &myVel, hsHitInfoExt *hit) const
{
if(!(fExtFlags & kSphereSet) )
IMakeSphere();
hsAssert(fBounds3Flags & kCenterValid, "Sphere set but not center (BoxBS(vel))");
hsVector3 minAxis;
hsScalar minDepth;
hsBool haveAxis = false;
hsVector3 tstAxis;
hsScalar tstDepth;
int i;
for( i = 0; i < 3; i++ )
{
hsBool tryAxis;
if( other.fExtFlags & kAxisAligned )
{
// first try the other box axes
hsScalar effMin = fCenter[i];
hsScalar effMax = effMin;
hsScalar velDist = myVel[i];
if( velDist > 0 )
effMax += velDist;
else
effMin += velDist;
effMax += fRadius;
effMin -= fRadius;
if( effMax < other.fMins[i] )
return false;
if( effMin > other.fMaxs[i] )
return false;
if( (other.fMins[i] <= effMin)
&&(other.fMaxs[i] <= effMax) )
{
tstDepth = other.fMaxs[i] - effMin;
hsAssert(tstDepth > -kRealSmall, "Late to be finding sep axis");
tstAxis.Set(i == 0 ? hsScalar1 : 0, i & 1 ? hsScalar1 : 0, i & 2 ? hsScalar1 : 0);
tryAxis = true;
}
else
if( (other.fMins[i] >= effMin)
&&(other.fMaxs[i] >= effMax) )
{
tstDepth = effMax - other.fMins[i];
hsAssert(tstDepth > -kRealSmall, "Late to be finding sep axis");
tstAxis.Set(i == 0 ? -hsScalar1 : 0, i & 1 ? -hsScalar1 : 0, i & 2 ? -hsScalar1 : 0);
tryAxis = true;
}
else
tryAxis = false;
}
else
{
// first try the other box axes
hsScalar radScaled = fRadius * other.fAxes[i].Magnitude();
hsScalar centerDist = other.fAxes[i].InnerProduct(fCenter);
hsScalar effMin = centerDist;
hsScalar effMax = centerDist;
hsScalar velDist = other.fAxes[i].InnerProduct(myVel);
if( velDist > 0 )
effMax += velDist;
else
effMin += velDist;
effMax += radScaled;
effMin -= radScaled;
if( !(other.fExtFlags & kDistsSet) )
other.IMakeDists();
if( effMax < other.fDists[i].fX )
return false;
if( effMin > other.fDists[i].fY )
return false;
if( centerDist <= other.fDists[i].fX )
{
tstDepth = effMax - other.fDists[i].fX;
tstAxis = -other.fAxes[i];
hsAssert(tstDepth > -kRealSmall, "Late to be finding sep axis");
}
else
if( centerDist >= other.fDists[i].fY )
{
tstDepth = other.fDists[i].fY - effMin;
tstAxis = other.fAxes[i];
hsAssert(tstDepth > -kRealSmall, "Late to be finding sep axis");
}
else
tryAxis = false;
}
if( tryAxis )
{
hsScalar magSq = tstAxis.MagnitudeSquared();
if( magSq > kRealSmall )
{
tstDepth *= tstDepth * hsScalarInvert(magSq);
if( !haveAxis||(tstDepth < minDepth) )
{
minDepth = tstDepth;
minAxis = tstAxis;
haveAxis = true;
}
hsAssert(!haveAxis || (minAxis.MagnitudeSquared() > kRealSmall), "Bogus");
}
}
}
// now try the axis between the center of sphere and center of other box
hsVector3 diag(&fCenter, &other.GetCenter());
if( !haveAxis && (diag.MagnitudeSquared() < kRealSmall) )
diag.Set(1.f, 0, 0);
hsScalar effMin = diag.InnerProduct(fCenter);
hsScalar effMax = effMin;
hsScalar velDist = diag.InnerProduct(myVel);
if( velDist > 0 )
effMax += velDist;
else
effMin += velDist;
hsScalar radDist = fRadius * diag.Magnitude();
effMax += radDist;
effMin -= radDist;
hsPoint2 otherDepth;
other.TestPlane(diag, otherDepth);
if( effMax < otherDepth.fX )
return false;
if( effMin > otherDepth.fY )
return false;
tstAxis = diag;
tstDepth = otherDepth.fY - effMin;
hsScalar magSq = tstAxis.MagnitudeSquared();
if( magSq > 0 )
{
tstDepth *= tstDepth * hsScalarInvert(magSq);
if( !haveAxis ||(tstDepth < minDepth) )
{
minDepth = tstDepth;
minAxis = tstAxis;
}
}
hsScalar invMag = hsScalarInvert(minAxis.Magnitude());
minAxis *= invMag;
hsAssert(minDepth >= 0, "Late to find sep plane");
minDepth = hsSquareRoot(minDepth);
hit->Set(this, &other, minAxis, minDepth);
return true;
}
hsBool hsBounds3Ext::ISectBoxBS(const hsBounds3Ext &other, const hsVector3 &myVel) const
{
if( !(fExtFlags & kSphereSet) )
IMakeSphere();
hsAssert(fBounds3Flags & kCenterValid, "Sphere set but not center (BoxBS)");
if( other.fExtFlags & kAxisAligned )
{
// first try the other box axes
int i;
for( i = 0; i < 3; i++ )
{
hsScalar effMin = fCenter[i];
hsScalar effMax = effMin;
hsScalar velDist = myVel[i];
if( velDist > 0 )
effMax += velDist;
else
effMin += velDist;
effMax += fRadius;
effMin -= fRadius;
if( effMax < other.fMins[i] )
return false;
if( effMin > other.fMaxs[i] )
return false;
}
}
else
{
// first try the other box axes
if( !(other.fExtFlags & kDistsSet) )
other.IMakeDists();
int i;
for( i = 0; i < 3; i++ )
{
hsScalar effMin = other.fAxes[i].InnerProduct(fCenter);
hsScalar effMax = effMin;
hsScalar velDist = other.fAxes[i].InnerProduct(myVel);
if( velDist > 0 )
effMax += velDist;
else
effMin += velDist;
hsScalar radScaled = fRadius * other.fAxes[i].Magnitude();
effMax += radScaled;
effMin -= radScaled;
if( effMax < other.fDists[i].fX )
return false;
if( effMin > other.fDists[i].fY )
return false;
}
}
// now try the axis between the center of sphere and center of other box
hsVector3 diag(&fCenter, &other.GetCenter());
hsScalar effMin = diag.InnerProduct(fCenter);
hsScalar effMax = effMin;
hsScalar velDist = diag.InnerProduct(myVel);
if( velDist > 0 )
effMax += velDist;
else
effMin += velDist;
hsScalar radDist = fRadius * diag.Magnitude();
effMax += radDist;
effMin -= radDist;
hsPoint2 otherDepth;
other.TestPlane(diag, otherDepth);
if( effMax < otherDepth.fX )
return false;
if( effMin > otherDepth.fY )
return false;
return true;
}
hsBool hsBounds3Ext::ISectLine(const hsPoint3* from, const hsPoint3* at) const
{
if( !(fExtFlags & kSphereSet) )
IMakeSphere();
hsPoint3 onLine;
hsScalar z = ClosestPointToLine(&fCenter, from, at, &onLine);
hsScalar distSq = hsVector3(&onLine, &fCenter).MagnitudeSquared();
if( distSq >= fRadius*fRadius )
return false;
if( fExtFlags & kAxisAligned )
{
int i;
for( i = 0; i < 3; i++ )
{
if( ((*from)[i] < fMins[i])&&((*at)[i] < fMins[i]) )
return false;
if( ((*from)[i] > fMaxs[i])&&((*at)[i] > fMaxs[i]) )
return false;
}
}
else
{
if( !(fExtFlags & kDistsSet) )
IMakeDists();
int i;
for( i = 0; i < 3; i++ )
{
hsScalar d0 = fAxes[i].InnerProduct(from);
hsScalar d1 = fAxes[i].InnerProduct(at);
if( d0 < d1 )
{
if( d1 < fDists[i].fX )
return false;
if( d0 > fDists[i].fY )
return false;
}
else
{
if( d0 < fDists[i].fX )
return false;
if( d1 > fDists[i].fY )
return false;
}
}
}
return true;
}
hsBool hsBounds3Ext::ISectCone(const hsPoint3* from, const hsPoint3* at, hsScalar radius) const
{
if( !(fExtFlags & kSphereSet) )
IMakeSphere();
// expensive
hsPoint3 onLine;
ClosestPointToLine(&fCenter, from, at, &onLine);
hsScalar distSq = hsVector3(&onLine, &fCenter).MagnitudeSquared();
hsScalar radiusSq = fRadius * fRadius;
if (distSq - radius*radius >= radiusSq)
return false;
hsScalar dist = hsVector3(from, &onLine).Magnitude();
hsScalar len = hsVector3(from, at).Magnitude();
hsScalar partRadius = radius/len * dist;
if (distSq - fRadius*fRadius - partRadius*partRadius >= 0)
{
hsVector3 rayToCenter(&fCenter,&onLine);
rayToCenter.Normalize();
hsPoint3 atEdge = *at + rayToCenter*radius;
ClosestPointToLine(&fCenter, from, &atEdge, &onLine);
distSq = hsVector3(&onLine, &fCenter).MagnitudeSquared();
if( distSq >= radiusSq )
return false;
}
// incorrect
if( fExtFlags & kAxisAligned )
{
int i;
for( i = 0; i < 3; i++ )
{
if( ((*from)[i] < fMins[i])&&((*at)[i]+radius < fMins[i]) )
return false;
if( ((*from)[i] > fMaxs[i])&&((*at)[i]-radius > fMaxs[i]) )
return false;
}
}
else
{
if( !(fExtFlags & kDistsSet) )
IMakeDists();
int i;
for( i = 0; i < 3; i++ )
{
ClosestPointToInfiniteLine(at, &fAxes[i], &onLine);
hsVector3 atLine(&onLine,at);
atLine.Normalize();
hsPoint3 atEdge = *at + atLine * radius;
hsScalar d0 = fAxes[i].InnerProduct(*from);
hsScalar d1 = fAxes[i].InnerProduct(atEdge);
if( d0 < d1 )
{
if( d1 < fDists[i].fX )
return false;
if( d0 > fDists[i].fY )
return false;
}
else
{
if( d0 < fDists[i].fX )
return false;
if( d1 > fDists[i].fY )
return false;
}
}
}
return true;
}
hsBool hsBounds3Ext::ISectRayBS(const hsPoint3& from, const hsPoint3& to, hsPoint3& at) const
{
hsVector3 c2f(&from,&GetCenter());
hsVector3 f2t(&to,&from);
hsScalar a = f2t.MagnitudeSquared();
hsScalar b = 2 * (c2f.InnerProduct(f2t));
hsScalar c = c2f.MagnitudeSquared() - GetRadius()*GetRadius();
hsScalar disc = b*b - 4*a*c;
if (disc < 0)
return false;
else
{
hsScalar discSqrt = hsSquareRoot(disc);
hsScalar denom = 1.f/(2*a);
hsScalar t = (-b - discSqrt) * denom;
if (t<1 && t>0)
at = from + (f2t * t);
else
return false;
#if 0
{
t = (-b + discSqrt) * denom;
if (t > 1)
return false;
at = from + (f2t * t);
}
#endif
return true;
}
}
void hsBounds3Ext::Read(hsStream *s)
{
fExtFlags = s->ReadSwap32();
hsBounds3::Read(s);
if( !(fExtFlags & kAxisAligned) )
{
fCorner.Read(s);
int i;
for( i = 0; i < 3; i++ )
{
fAxes[i].Read(s);
fDists[i].fX = s->ReadSwapScalar();
fDists[i].fY = s->ReadSwapScalar();
}
IMakeMinsMaxs();
IMakeDists();
}
IMakeSphere();
}
void hsBounds3Ext::Write(hsStream *s)
{
s->WriteSwap32(fExtFlags);
hsBounds3::Write(s);
if( !(fExtFlags & kAxisAligned) )
{
fCorner.Write(s);
int i;
for( i = 0; i < 3; i++ )
{
fAxes[i].Write(s);
if( fExtFlags & kDistsSet )
{
s->WriteSwapScalar(fDists[i].fX);
s->WriteSwapScalar(fDists[i].fY);
}
else
{
// Playing nice with binary patches--writing uninited values BAD!
s->WriteSwapScalar( 0.f );
s->WriteSwapScalar( 0.f );
}
}
}
}
#if 0 // Commenting out this which will be made redundant and/or obsolete by Havok integration
////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////
void hsBounds3Tri::TestPlane(const hsVector3 &n, hsPoint2 &depth) const
{
depth.fX = depth.fY = n.InnerProduct(fVerts[0]);
hsScalar d1, d2;
d1 = n.InnerProduct(fVerts[1]);
d2 = n.InnerProduct(fVerts[2]);
if( d1 > d2 )
{
if( d1 > depth.fY )
depth.fY = d1;
if( d2 < depth.fX )
depth.fX = d2;
}
else
{
if( d2 > depth.fY )
depth.fY = d2;
if( d1 < depth.fX )
depth.fX = d1;
}
}
hsBool hsBounds3Tri::ClosestTriPoint(const hsPoint3 *p, hsPoint3 *out, const hsVector3 *ax) const
{
// project point onto tri plane
hsPoint3 pPln;
if( ax )
{
hsScalar t;
t = fNormal.InnerProduct(fVerts[0] - *p);
hsScalar s = fNormal.InnerProduct(ax);
if( (s > hsBounds::kRealSmall)||(s < -hsBounds::kRealSmall) )
{
t /= s;
pPln = *p;
pPln += *ax * t;
}
else
{
return ClosestTriPoint(p, out);
}
}
else
{
hsScalar t;
t = fNormal.InnerProduct(fVerts[0] - *p);
t /= fNormal.MagnitudeSquared();
pPln = *p;
pPln += fNormal * t;
}
if( !(fTriFlags & kAxesSet) )
SetAxes();
int nIn = 0;
int firstIn, secondIn;
int i;
for( i = 0; i < 3; i++ )
{
hsScalar tst = fPerpAxes[i].InnerProduct(pPln);
hsBool in = false;
if( fOnIsMax & (1 << i) )
{
if( tst <= fPerpDists[i].fY )
in = true;
}
else
{
if( tst >= fPerpDists[i].fX )
in = true;
}
if( in )
{
if( nIn++ )
secondIn = i;
else
firstIn = i;
}
}
switch( nIn )
{
case 3:
*out = pPln;
break;
case 1:
{
int k, kPlus;
k = firstIn == 2 ? 0 : firstIn+1;
kPlus = k == 2 ? 0 : k+1;
hsPoint3 pTmp;
hsScalar z;
z = hsBounds3::ClosestPointToLine(&pPln, fVerts+k, fVerts+kPlus, &pTmp);
if( z <= hsScalar1 )
*out = pTmp;
else
{
k = kPlus;
kPlus = k == 2 ? 0 : k+1;
z = hsBounds3::ClosestPointToLine(&pPln, fVerts+k, fVerts+kPlus, out);
}
}
break;
case 2:
{
int k, kPlus;
k = secondIn == 2 ? 0 : secondIn+1;
if( k == firstIn )
k++;
kPlus = k == 2 ? 0 : k+1;
hsBounds3::ClosestPointToLine(&pPln, fVerts+k, fVerts+kPlus, out);
break;
}
case 0:
hsAssert(false, "Extreme bogosity, inverted tri?!?");
*out = pPln;
return false;
}
#ifdef HS_DEBUGGING // mf horse testing
#if 0
if( 0 )
{
hsVector3 ndeb = hsVector3(fVerts+1, fVerts) % hsVector3(fVerts+2, fVerts);
hsScalar dis;
dis = fNormal.InnerProduct(pPln) - fDist;
if( (fDist > hsBounds::kRealSmall)||(fDist < -hsBounds::kRealSmall) )
dis /= fDist;
hsAssert((dis < hsBounds::kRealSmall)&&(dis > -hsBounds::kRealSmall), "Non-planar pPln");
dis = hsVector3(&pPln, out).MagnitudeSquared();
hsScalar vDis;
vDis = hsVector3(&pPln, fVerts+0).MagnitudeSquared();
hsAssert( vDis - dis > -hsBounds::kRealSmall, "Bad closest point");
vDis = hsVector3(&pPln, fVerts+1).MagnitudeSquared();
hsAssert( vDis - dis > -hsBounds::kRealSmall, "Bad closest point");
vDis = hsVector3(&pPln, fVerts+2).MagnitudeSquared();
hsAssert( vDis - dis > -hsBounds::kRealSmall, "Bad closest point");
hsBool dork = false;
if( dork )
{
hsScalar zn[3];
hsScalar zf[3];
hsScalar z[3];
int i;
for( i = 0; i < 3; i++ )
{
z[i] = fPerpAxes[i].InnerProduct(fVerts[i]);
int j;
j = i == 0 ? 2 : i-1;
zf[i] = fPerpAxes[i].InnerProduct(fVerts[j]);
j = i == 2 ? 0 : i+1;
zn[i] = fPerpAxes[i].InnerProduct(fVerts[j]);
}
return ClosestTriPoint(p, out, ax);
}
}
#endif
#endif
return 3 == nIn;
}
void hsBounds3Tri::SetAxes() const
{
fOnIsMax = 0;
hsVector3 edge[3];
edge[0].Set(fVerts, fVerts+1);
edge[1].Set(fVerts+1, fVerts+2);
edge[2].Set(fVerts+2, fVerts);
hsVector3 perp = edge[2] % edge[0];
int i;
for( i = 0; i < 3; i++ )
{
int j = i == 2 ? 0 : i+1;
int k = j == 2 ? 0 : j+1;
fPerpAxes[i] = edge[i] % perp;
fPerpAxes[i].Normalize();
fPerpDists[i].fX = fPerpAxes[i].InnerProduct(fVerts[i]);
fPerpDists[i].fY = fPerpAxes[i].InnerProduct(fVerts[k]);
if( fPerpDists[i].fX > fPerpDists[i].fY )
{
fOnIsMax |= 1 << i;
hsScalar d = fPerpDists[i].fX;
fPerpDists[i].fX = fPerpDists[i].fY;
fPerpDists[i].fY = d;
}
}
fTriFlags |= kAxesSet;
}
hsBounds3Tri* hsBounds3Tri::Transform(const hsMatrix44& x)
{
#if 0 // IDENT
if( x.fFlags & hsMatrix44::kIsIdent )
return this;
#endif // IDENT
fVerts[0] = x * fVerts[0];
fVerts[1] = x * fVerts[1];
fVerts[2] = x * fVerts[2];
hsVector3 v1, v2;
v1.Set(&fVerts[1], &fVerts[0]);
v2.Set(&fVerts[2], &fVerts[0]);
fNormal = v1 % v2;
// mf horse - do we need to normalize here?
// fNormal.Normalize();
fDist = fNormal.InnerProduct(fVerts[0]);
fTriFlags &= ~kAxesSet;
SetAxes();
return this;
}
hsBounds3Tri* hsBounds3Tri::Translate(const hsVector3& v)
{
fVerts[0] += v;
fVerts[1] += v;
fVerts[2] += v;
fDist = fNormal.InnerProduct(fVerts[0]);
int i;
for( i = 0; i < 3; i++ )
{
int j = i == 2 ? 0 : i+1;
int k = j == 2 ? 0 : j+1;
hsScalar del = fPerpAxes[i].InnerProduct(v);
fPerpDists[i].fX += del;
fPerpDists[i].fY += del;
}
return this;
}
void hsBounds3Tri::Set(const hsPoint3& v0,
const hsPoint3& v1,
const hsPoint3& v2,
hsTriangle3* t,
const hsMatrix44& x)
{
fVerts[0] = v0;
fVerts[1] = v1;
fVerts[2] = v2;
fOnIsMax = 0;
fTriangle = t;
if( t->fFlags & hsTriangle3::kTwoSided )
fTriFlags |= kDoubleSide;
#if 0 // IDENT
if( x.fFlags & hsMatrix44::kIsIdent )
{
hsVector3 v1, v2;
v1.Set(&fVerts[1], &fVerts[0]);
v2.Set(&fVerts[2], &fVerts[0]);
fNormal = v1 % v2;
// mf horse - do we need to normalize here?
// fNormal.Normalize();
fDist = fNormal.InnerProduct(fVerts[0]);
fTriFlags &= ~kAxesSet;
SetAxes();
}
else
#endif // IDENT
Transform(x);
}
hsBounds3Tri::hsBounds3Tri(const hsPoint3& v0,
const hsPoint3& v1,
const hsPoint3& v2,
hsTriangle3* t,
const hsMatrix44& x)
{
Set(v0, v1, v2, t, x);
}
hsBounds3Tri::hsBounds3Tri(hsTriangle3* t, const hsMatrix44& x)
{
Set(t->fVert[0]->fVtx->fLocalPos,
t->fVert[2]->fVtx->fLocalPos,
t->fVert[2]->fVtx->fLocalPos,
t, x);
}
void hsBounds3Tri::Set(hsPoint3 *v0, hsPoint3 *v1, hsPoint3 *v2, hsVector3 *n, UInt32 triFlags, hsTriangle3 *t)
{
fTriFlags = 0;
if( triFlags & hsTriangle3::kTwoSided )
fTriFlags |= kDoubleSide;
fNormal = *n;
fVerts[0] = *v0;
fVerts[1] = *v1;
fVerts[2] = *v2;
fOnIsMax = 0;
fTriangle = t;
fDist = fNormal.InnerProduct(fVerts[0]);
}
hsBounds3Tri::hsBounds3Tri(hsPoint3 *v0, hsPoint3 *v1, hsPoint3 *v2, hsVector3 *n, UInt32 triFlags, hsTriangle3 *t)
{
Set(v0, v1, v2, n, triFlags, t);
}
hsBounds3Tri::hsBounds3Tri(hsTriangle3* t)
{
Set(&t->fVert[0]->fVtx->fLocalPos,
&t->fVert[1]->fVtx->fLocalPos,
&t->fVert[2]->fVtx->fLocalPos,
&t->fNormal, t->fFlags, t);
}
hsBounds3Tri::~hsBounds3Tri()
{
}
// Finds closest intersection vertex or triangle/center-line intersection
hsBool hsBounds3Tri::ISectCone(const hsPoint3& from, const hsPoint3& to, hsScalar cosThetaSq, hsBool ignoreFacing, hsPoint3& at, hsBool& backSide) const
{
hsScalar d0 = from.InnerProduct(fNormal);
hsScalar d1 = at.InnerProduct(fNormal);
hsScalar dt = fNormal.InnerProduct(fVerts[0]);
backSide = d0 < dt;
if( !ignoreFacing && backSide )
return false;
if ( (d0 < dt || d1 < dt) &&
(d0 > dt || d1 > dt) &&
ClosestTriPoint(&from, &at, &hsVector3(&to,&from)) )
return true;
hsVector3 av(&to,&from);
hsScalar distASq = av.MagnitudeSquared();
hsScalar radiusSq = distASq * (1-cosThetaSq)/cosThetaSq;
hsScalar minDistSq = 0;
Int32 minVert = 0;
hsBool sect = false;
for (Int32 i=0; i<3; i++)
{
hsPoint3 onLine;
hsScalar t = hsBounds3::ClosestPointToLine(&fVerts[i], &from, &to, &onLine);
// outside the cap of the cylinder
if (t<0 || t>1)
continue;
// outside the edge of the cylinder
if (hsVector3(&onLine, &fVerts[i]).MagnitudeSquared() >= radiusSq)
continue;
hsVector3 bv(&fVerts[i],&from);
hsScalar distBSq = bv.MagnitudeSquared();
hsScalar cosMuSquared = (av * bv) / (distASq * distBSq);
// outside the angle of the cone
if (cosMuSquared > cosThetaSq)
continue;
if (!sect || distBSq < minDistSq)
{
minVert = i;
minDistSq = distBSq;
sect = true;
}
}
at = fVerts[minVert];
return sect;
}
#endif // Commenting out this which will be made redundant and/or obsolete by Havok integration