|
|
|
/*==LICENSE==*
|
|
|
|
|
|
|
|
CyanWorlds.com Engine - MMOG client, server and tools
|
|
|
|
Copyright (C) 2011 Cyan Worlds, Inc.
|
|
|
|
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
|
|
|
|
Additional permissions under GNU GPL version 3 section 7
|
|
|
|
|
|
|
|
If you modify this Program, or any covered work, by linking or
|
|
|
|
combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK,
|
|
|
|
NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent
|
|
|
|
JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK
|
|
|
|
(or a modified version of those libraries),
|
|
|
|
containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA,
|
|
|
|
PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG
|
|
|
|
JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the
|
|
|
|
licensors of this Program grant you additional
|
|
|
|
permission to convey the resulting work. Corresponding Source for a
|
|
|
|
non-source form of such a combination shall include the source code for
|
|
|
|
the parts of OpenSSL and IJG JPEG Library used as well as that of the covered
|
|
|
|
work.
|
|
|
|
|
|
|
|
You can contact Cyan Worlds, Inc. by email legal@cyan.com
|
|
|
|
or by snail mail at:
|
|
|
|
Cyan Worlds, Inc.
|
|
|
|
14617 N Newport Hwy
|
|
|
|
Mead, WA 99021
|
|
|
|
|
|
|
|
*==LICENSE==*/
|
|
|
|
#include "HeadSpin.h"
|
|
|
|
#include "hsQuat.h"
|
|
|
|
#include "hsMatrix44.h"
|
|
|
|
#include "hsStream.h"
|
|
|
|
#include "hsFastMath.h"
|
|
|
|
|
|
|
|
//
|
|
|
|
// Quaternion class.
|
|
|
|
// For conversion to and from euler angles, see hsEuler.cpp,h.
|
|
|
|
//
|
|
|
|
|
|
|
|
//
|
|
|
|
// Construct quat from angle (in radians) and axis of rotation
|
|
|
|
//
|
|
|
|
hsQuat::hsQuat(float rad, const hsVector3* axis)
|
|
|
|
{
|
|
|
|
// hsAssert(rad >= -M_PI && rad <= M_PI, "Quat: Angle should be between -PI and PI");
|
|
|
|
|
|
|
|
fW = cos(rad*0.5f);
|
|
|
|
|
|
|
|
float s = sin(rad*0.5f);
|
|
|
|
fX = axis->fX*s;
|
|
|
|
fY = axis->fY*s;
|
|
|
|
fZ = axis->fZ*s;
|
|
|
|
}
|
|
|
|
|
|
|
|
hsQuat hsQuat::Inverse()
|
|
|
|
{
|
|
|
|
hsQuat q2 = Conjugate();
|
|
|
|
float msInv = 1.0f/q2.MagnitudeSquared();
|
|
|
|
return (q2 * msInv);
|
|
|
|
}
|
|
|
|
|
|
|
|
hsPoint3 hsQuat::Rotate(const hsScalarTriple* v)
|
|
|
|
{
|
|
|
|
hsQuat qInv = Inverse();
|
|
|
|
hsQuat qVec(v->fX, v->fY, v->fZ, 0);
|
|
|
|
hsQuat t = qInv * qVec;
|
|
|
|
hsQuat res = (t * (*this));
|
|
|
|
//hsAssert(hsABS(res.fW)<1e-5, "Error rotating vector");
|
|
|
|
return hsPoint3(res.fX, res.fY, res.fZ);
|
|
|
|
}
|
|
|
|
|
|
|
|
void hsQuat::SetAngleAxis(const float rad, const hsVector3 &axis)
|
|
|
|
{
|
|
|
|
fW = cos(rad*0.5f);
|
|
|
|
|
|
|
|
float s = sin(rad*0.5f);
|
|
|
|
fX = axis.fX*s;
|
|
|
|
fY = axis.fY*s;
|
|
|
|
fZ = axis.fZ*s;
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Might want to Normalize before calling this
|
|
|
|
//
|
|
|
|
void hsQuat::GetAngleAxis(float *rad, hsVector3 *axis) const
|
|
|
|
{
|
|
|
|
hsAssert((fW >= -1) && (fW <= 1), "Invalid acos argument");
|
|
|
|
float ac = acos(fW);
|
|
|
|
*rad = 2.0f * ac;
|
|
|
|
|
|
|
|
float s = sin(ac);
|
|
|
|
if (s != 0.0f)
|
|
|
|
{
|
|
|
|
float invS = 1.0f/s;
|
|
|
|
axis->Set(fX*invS, fY*invS, fZ*invS);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
axis->Set(0,0,0);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
//
|
|
|
|
//
|
|
|
|
float hsQuat::MagnitudeSquared()
|
|
|
|
{
|
|
|
|
return (fX*fX + fY*fY + fZ*fZ + fW*fW);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
//
|
|
|
|
//
|
|
|
|
float hsQuat::Magnitude()
|
|
|
|
{
|
|
|
|
return sqrt(MagnitudeSquared());
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
//
|
|
|
|
//
|
|
|
|
void hsQuat::Normalize()
|
|
|
|
{
|
|
|
|
float invMag = 1.0f/Magnitude();
|
|
|
|
fX *= invMag;
|
|
|
|
fY *= invMag;
|
|
|
|
fZ *= invMag;
|
|
|
|
fW *= invMag;
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
//
|
|
|
|
//
|
|
|
|
void hsQuat::NormalizeIfNeeded()
|
|
|
|
{
|
|
|
|
|
|
|
|
float magSquared = MagnitudeSquared();
|
|
|
|
if (magSquared == 1.0f)
|
|
|
|
return;
|
|
|
|
|
|
|
|
float invMag = 1.0f/sqrt(magSquared);
|
|
|
|
fX *= invMag;
|
|
|
|
fY *= invMag;
|
|
|
|
fZ *= invMag;
|
|
|
|
fW *= invMag;
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// This is for a RHS.
|
|
|
|
// The quat should be normalized first.
|
|
|
|
//
|
|
|
|
void hsQuat::MakeMatrix(hsMatrix44 *mat) const
|
|
|
|
{
|
|
|
|
// mf horse - this is transpose of both what
|
|
|
|
// Gems says and what i'm expecting to come
|
|
|
|
// out of it, so i'm flipping it.
|
|
|
|
mat->fMap[0][0] = 1.0f - 2.0f*fY*fY - 2.0f*fZ*fZ;
|
|
|
|
mat->fMap[0][1] = 2.0f*fX*fY - 2.0f*fW*fZ;
|
|
|
|
mat->fMap[0][2] = 2.0f*fX*fZ + 2.0f*fW*fY;
|
|
|
|
mat->fMap[0][3] = 0.0f;
|
|
|
|
|
|
|
|
mat->fMap[1][0] = 2.0f*fX*fY + 2.0f*fW*fZ;
|
|
|
|
mat->fMap[1][1] = 1.0f - 2.0f*fX*fX - 2.0f*fZ*fZ;
|
|
|
|
mat->fMap[1][2] = 2.0f*fY*fZ - 2.0f*fW*fX;
|
|
|
|
mat->fMap[1][3] = 0.0f;
|
|
|
|
|
|
|
|
mat->fMap[2][0] = 2.0f*fX*fZ - 2.0f*fW*fY;
|
|
|
|
mat->fMap[2][1] = 2.0f*fY*fZ + 2.0f*fW*fX;
|
|
|
|
mat->fMap[2][2] = 1.0f - 2.0f*fX*fX - 2.0f*fY*fY;
|
|
|
|
mat->fMap[2][3] = 0.0f;
|
|
|
|
|
|
|
|
mat->fMap[3][0] = 0.0f;
|
|
|
|
mat->fMap[3][1] = 0.0f;
|
|
|
|
mat->fMap[3][2] = 0.0f;
|
|
|
|
mat->fMap[3][3] = 1.0f;
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
mat->fMap[0][0] = fW*fW + fX*fX - fY*fY - fZ*fZ;
|
|
|
|
mat->fMap[1][0] = 2.0f*fX*fY - 2.0f*fW*fZ;
|
|
|
|
mat->fMap[2][0] = 2.0f*fX*fZ + 2.0f*fW*fY;
|
|
|
|
mat->fMap[3][0] = 0.0f;
|
|
|
|
|
|
|
|
mat->fMap[0][1] = 2.0f*fX*fY + 2.0f*fW*fZ;
|
|
|
|
mat->fMap[1][1] = fW*fW - fX*fX + fY*fY - fZ*fZ;
|
|
|
|
mat->fMap[2][1] = 2.0f*fY*fZ - 2.0f*fW*fX;
|
|
|
|
mat->fMap[3][1] = 0.0f;
|
|
|
|
|
|
|
|
mat->fMap[0][2] = 2.0f*fX*fZ - 2.0f*fW*fY;
|
|
|
|
mat->fMap[1][2] = 2.0f*fY*fZ + 2.0f*fW*fX;
|
|
|
|
mat->fMap[2][2] = fW*fW - fX*fX - fY*fY + fZ*fZ;
|
|
|
|
mat->fMap[3][2] = 0.0f;
|
|
|
|
|
|
|
|
mat->fMap[0][3] = 0.0f;
|
|
|
|
mat->fMap[1][3] = 0.0f;
|
|
|
|
mat->fMap[2][3] = 0.0f;
|
|
|
|
mat->fMap[3][3] = fW*fW + fX*fX + fY*fY + fZ*fZ;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
mat->NotIdentity();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Binary operators
|
|
|
|
hsQuat hsQuat::operator-(const hsQuat &in) const
|
|
|
|
{
|
|
|
|
return hsQuat(fX-in.fX, fY-in.fY, fZ-in.fZ, fW-in.fW);
|
|
|
|
}
|
|
|
|
|
|
|
|
hsQuat hsQuat::operator+(const hsQuat &in) const
|
|
|
|
{
|
|
|
|
return hsQuat(fX+in.fX, fY+in.fY, fZ+in.fZ, fW+in.fW);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Return quaternion product (this * in). Note: order is important!
|
|
|
|
// To combine rotations, use the product (qSecond * qFirst),
|
|
|
|
// which gives the effect of rotating by qFirst then qSecond.
|
|
|
|
//
|
|
|
|
hsQuat hsQuat::operator*(const hsQuat &in) const
|
|
|
|
{
|
|
|
|
hsQuat ret;
|
|
|
|
ret.fW = (fW*in.fW - fX*in.fX - fY*in.fY - fZ*in.fZ);
|
|
|
|
ret.fX = (fY*in.fZ - in.fY*fZ + fW*in.fX + in.fW*fX);
|
|
|
|
ret.fY = (fZ*in.fX - in.fZ*fX + fW*in.fY + in.fW*fY);
|
|
|
|
ret.fZ = (fX*in.fY - in.fX*fY + fW*in.fZ + in.fW*fZ);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// I/O
|
|
|
|
void hsQuat::Read(hsStream *stream)
|
|
|
|
{
|
|
|
|
fX = stream->ReadLEFloat();
|
|
|
|
fY = stream->ReadLEFloat();
|
|
|
|
fZ = stream->ReadLEFloat();
|
|
|
|
fW = stream->ReadLEFloat();
|
|
|
|
}
|
|
|
|
|
|
|
|
void hsQuat::Write(hsStream *stream)
|
|
|
|
{
|
|
|
|
stream->WriteLEFloat(fX);
|
|
|
|
stream->WriteLEFloat(fY);
|
|
|
|
stream->WriteLEFloat(fZ);
|
|
|
|
stream->WriteLEFloat(fW);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
//
|
|
|
|
// Interpolate on a sphere.
|
|
|
|
//
|
|
|
|
void hsQuat::SetFromSlerp(hsQuat *q1, hsQuat *q2, float t)
|
|
|
|
{
|
|
|
|
hsAssert(t>=0.0 && t<= 1.0, "Quat slerp param must be between 0 an 1");
|
|
|
|
float theta = acos(q1->Dot(*q2));
|
|
|
|
|
|
|
|
float st = sin(theta);
|
|
|
|
assert(st != 0.0);
|
|
|
|
|
|
|
|
float s1 = sin(1.0-t)*theta / st;
|
|
|
|
|
|
|
|
float s2 = sin(t)*theta / st;
|
|
|
|
|
|
|
|
*this = (*q1) * s1 + (*q2) * s2;
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
/*
|
|
|
|
* Spherical linear interpolation of unit quaternions with spins
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define EPSILON 1.0E-6 /* a tiny number */
|
|
|
|
|
|
|
|
void hsQuat::SetFromSlerp(const hsQuat &a, const hsQuat &b, float alpha, int spin)
|
|
|
|
// double alpha; /* interpolation parameter (0 to 1) */
|
|
|
|
// Quaternion *a, *b; /* start and end unit quaternions */
|
|
|
|
// int spin; /* number of extra spin rotations */
|
|
|
|
{
|
|
|
|
float beta; /* complementary interp parameter */
|
|
|
|
float theta; /* angle between A and B */
|
|
|
|
float sin_t, cos_t; /* sine, cosine of theta */
|
|
|
|
float phi; /* theta plus spins */
|
|
|
|
int bflip; /* use negation of B? */
|
|
|
|
|
|
|
|
/* cosine theta = dot product of A and B */
|
|
|
|
cos_t = a.Dot(b);
|
|
|
|
|
|
|
|
/* if B is on opposite hemisphere from A, use -B instead */
|
|
|
|
if (cos_t < 0.0)
|
|
|
|
{
|
|
|
|
cos_t = -cos_t;
|
|
|
|
bflip = true;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
bflip = false;
|
|
|
|
|
|
|
|
/* if B is (within precision limits) the same as A,
|
|
|
|
* just linear interpolate between A and B.
|
|
|
|
* Can't do spins, since we don't know what direction to spin.
|
|
|
|
*/
|
|
|
|
if (1.0 - cos_t < EPSILON)
|
|
|
|
{
|
|
|
|
beta = 1.0f - alpha;
|
|
|
|
} else
|
|
|
|
{ /* normal case */
|
|
|
|
// hsAssert((cos_t >= -1) && (cos_t <= 1), "Invalid acos argument");
|
|
|
|
theta = acos(cos_t);
|
|
|
|
phi = theta + spin * M_PI;
|
|
|
|
sin_t = sin(theta);
|
|
|
|
hsAssert(sin_t != 0.0, "Invalid sin value in quat slerp");
|
|
|
|
beta = sin(theta - alpha*phi) / sin_t;
|
|
|
|
alpha = sin(alpha*phi) / sin_t;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (bflip)
|
|
|
|
alpha = -alpha;
|
|
|
|
|
|
|
|
/* interpolate */
|
|
|
|
fX = beta*a.fX + alpha*b.fX;
|
|
|
|
fY = beta*a.fY + alpha*b.fY;
|
|
|
|
fZ = beta*a.fZ + alpha*b.fZ;
|
|
|
|
fW = beta*a.fW + alpha*b.fW;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
//
|
|
|
|
//
|
|
|
|
void hsQuat::SetFromMatrix(const hsMatrix44* mat)
|
|
|
|
{
|
|
|
|
float wSq = 0.25f*(1 + mat->fMap[0][0] + mat->fMap[1][1] + mat->fMap[2][2]);
|
|
|
|
if (wSq > EPSILON)
|
|
|
|
{
|
|
|
|
fW = sqrt(wSq);
|
|
|
|
float iw4 = 1.0f/(4.0f*fW);
|
|
|
|
fX = (mat->fMap[2][1] - mat->fMap[1][2]) * iw4;
|
|
|
|
fY = (mat->fMap[0][2] - mat->fMap[2][0]) * iw4;
|
|
|
|
fZ = (mat->fMap[1][0] - mat->fMap[0][1]) * iw4;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
fW = 0;
|
|
|
|
float xSq = -0.5f*(mat->fMap[1][1] + mat->fMap[2][2]);
|
|
|
|
if (xSq > EPSILON)
|
|
|
|
{
|
|
|
|
fX = sqrt(xSq);
|
|
|
|
float ix2 = 1.0f/(2.0f*fX);
|
|
|
|
fY = mat->fMap[1][0] * ix2;
|
|
|
|
fZ = mat->fMap[2][0] * ix2;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
fX = 0;
|
|
|
|
float ySq = 0.5f * (1 - mat->fMap[2][2]);
|
|
|
|
if (ySq > EPSILON)
|
|
|
|
{
|
|
|
|
fY = sqrt(ySq);
|
|
|
|
fZ = mat->fMap[2][1] / (2.0f*fY);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
fY = 0;
|
|
|
|
fZ = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// 9/15/03 - Colin
|
|
|
|
// Changed to not use hsFastMath::InvSqrt, due to errors occuring at some
|
|
|
|
// specific angles that caused Havok to blow up.
|
|
|
|
hsQuat hsQuat::QuatFromMatrix44(const hsMatrix44& mat)
|
|
|
|
{
|
|
|
|
/* This algorithm avoids near-zero divides by looking for a large component
|
|
|
|
* - first w, then x, y, or z. When the trace is greater than zero,
|
|
|
|
* |w| is greater than 1/2, which is as small as a largest component can be.
|
|
|
|
* Otherwise, the largest diagonal entry corresponds to the largest of |x|,
|
|
|
|
* |y|, or |z|, one of which must be larger than |w|, and at least 1/2. */
|
|
|
|
hsQuat qu;
|
|
|
|
float tr, s;
|
|
|
|
|
|
|
|
const int X = 0;
|
|
|
|
const int Y = 1;
|
|
|
|
const int Z = 2;
|
|
|
|
const int W = 3;
|
|
|
|
tr = mat.fMap[X][X] + mat.fMap[Y][Y]+ mat.fMap[Z][Z];
|
|
|
|
if (tr >= 0.0) {
|
|
|
|
s = float(sqrt(tr + 1.f));
|
|
|
|
qu.fW = 0.5f * s;
|
|
|
|
s = 0.5f / s;
|
|
|
|
qu.fX = (mat.fMap[Z][Y] - mat.fMap[Y][Z]) * s;
|
|
|
|
qu.fY = (mat.fMap[X][Z] - mat.fMap[Z][X]) * s;
|
|
|
|
qu.fZ = (mat.fMap[Y][X] - mat.fMap[X][Y]) * s;
|
|
|
|
} else {
|
|
|
|
int h = X;
|
|
|
|
if (mat.fMap[Y][Y] > mat.fMap[X][X])
|
|
|
|
h = Y;
|
|
|
|
if (mat.fMap[Z][Z] > mat.fMap[h][h])
|
|
|
|
h = Z;
|
|
|
|
switch (h) {
|
|
|
|
#define caseMacro(i,j,k,I,J,K) \
|
|
|
|
case I:\
|
|
|
|
s = float(sqrt( (mat.fMap[I][I] - (mat.fMap[J][J]+mat.fMap[K][K])) + 1.f )); \
|
|
|
|
qu.i = 0.5f * s; \
|
|
|
|
s = 0.5f / s; \
|
|
|
|
qu.j = (mat.fMap[I][J] + mat.fMap[J][I]) * s; \
|
|
|
|
qu.k = (mat.fMap[K][I] + mat.fMap[I][K]) * s; \
|
|
|
|
qu.fW = (mat.fMap[K][J] - mat.fMap[J][K]) * s; \
|
|
|
|
break
|
|
|
|
caseMacro(fX,fY,fZ,X,Y,Z);
|
|
|
|
caseMacro(fY,fZ,fX,Y,Z,X);
|
|
|
|
caseMacro(fZ,fX,fY,Z,X,Y);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return (qu);
|
|
|
|
}
|
|
|
|
|
|
|
|
hsQuat& hsQuat::SetFromMatrix44(const hsMatrix44& mat)
|
|
|
|
{
|
|
|
|
return (*this = QuatFromMatrix44(mat));
|
|
|
|
}
|