You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

583 lines
13 KiB

/*==LICENSE==*
CyanWorlds.com Engine - MMOG client, server and tools
Copyright (C) 2011 Cyan Worlds, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
You can contact Cyan Worlds, Inc. by email legal@cyan.com
or by snail mail at:
Cyan Worlds, Inc.
14617 N Newport Hwy
Mead, WA 99021
*==LICENSE==*/
#include "hsTypes.h"
#include "plSpaceTree.h"
#include "hsStream.h"
#include "hsBitVector.h"
#include "plProfile.h"
#include "plIntersect/plVolumeIsect.h"
#include "plMath/hsRadixSort.h"
static hsBitVector scratchTotVec;
static hsBitVector scratchBitVec;
static hsTArray<Int16> scratchList;
static hsTArray<hsRadixSort::Elem> scratchSort;
plProfile_CreateCounter("Harvest Leaves", "Draw", HarvestLeaves);
void plSpaceTreeNode::Read(hsStream* s)
{
fWorldBounds.Read(s);
fFlags = s->ReadSwap16();
fParent = s->ReadSwap16();
fChildren[0] = s->ReadSwap16();
fChildren[1] = s->ReadSwap16();
}
void plSpaceTreeNode::Write(hsStream* s)
{
fWorldBounds.Write(s);
s->WriteSwap16(fFlags);
s->WriteSwap16(fParent);
s->WriteSwap16(fChildren[0]);
if( fFlags & kIsLeaf )
// Temp for now to play nice with binary patches
s->WriteSwap16( 0 );
else
s->WriteSwap16(fChildren[1]);
}
plSpaceTree::plSpaceTree()
: fCullFunc(nil),
fNumLeaves(0),
fCache(nil)
{
}
plSpaceTree::~plSpaceTree()
{
}
void plSpaceTree::IRefreshRecur(Int16 which)
{
plSpaceTreeNode& sub = fTree[which];
if( sub.fFlags & plSpaceTreeNode::kIsLeaf )
{
sub.fFlags &= ~plSpaceTreeNode::kDirty;
return;
}
if( sub.fFlags & plSpaceTreeNode::kDirty )
{
IRefreshRecur(sub.fChildren[0]);
IRefreshRecur(sub.fChildren[1]);
sub.fWorldBounds.MakeEmpty();
if( !(fTree[sub.fChildren[0]].fFlags & plSpaceTreeNode::kDisabled) )
sub.fWorldBounds.Union(&fTree[sub.fChildren[0]].fWorldBounds);
if( !(fTree[sub.fChildren[1]].fFlags & plSpaceTreeNode::kDisabled) )
sub.fWorldBounds.Union(&fTree[sub.fChildren[1]].fWorldBounds);
sub.fFlags &= ~plSpaceTreeNode::kDirty;
}
}
void plSpaceTree::Refresh()
{
if( !IsEmpty() )
IRefreshRecur(fRoot);
}
void plSpaceTree::SetTreeFlag(UInt16 f, hsBool on)
{
if( IsEmpty() )
return;
if( !on )
{
ClearTreeFlag(f);
return;
}
int i;
for( i = 0; i < fTree.GetCount(); i++ )
fTree[i].fFlags |= f;
}
void plSpaceTree::ClearTreeFlag(UInt16 f)
{
if( IsEmpty() )
return;
int i;
for( i = 0; i < fTree.GetCount(); i++ )
fTree[i].fFlags &= ~f;
}
void plSpaceTree::SetLeafFlag(Int16 idx, UInt16 f, hsBool on)
{
if( IsEmpty() )
return;
hsAssert(idx == fTree[idx].fLeafIndex, "Some scrambling of indices");
if( !on )
{
ClearLeafFlag(idx, f);
return;
}
fTree[idx].fFlags |= f;
idx = fTree[idx].fParent;
while( idx != kRootParent )
{
if( (fTree[idx].fFlags & f)
|| !(fTree[fTree[idx].fChildren[0]].fFlags & fTree[fTree[idx].fChildren[1]].fFlags & f) )
{
idx = kRootParent;
}
else
{
fTree[idx].fFlags |= f;
idx = fTree[idx].fParent;
}
}
}
void plSpaceTree::ClearLeafFlag(Int16 idx, UInt16 f)
{
hsAssert(idx == fTree[idx].fLeafIndex, "Some scrambling of indices");
while( idx != kRootParent )
{
if( !(fTree[idx].fFlags & f) )
{
return;
}
else
{
fTree[idx].fFlags &= ~f;
idx = fTree[idx].fParent;
}
}
}
inline void plSpaceTree::IEnableLeaf(Int16 idx, hsBitVector& cache) const
{
cache.SetBit(idx);
idx = fTree[idx].fParent;
while( idx != kRootParent )
{
if( cache.IsBitSet(idx) )
{
return;
}
else
{
cache.SetBit(idx);
idx = fTree[idx].fParent;
}
}
}
void plSpaceTree::EnableLeaf(Int16 idx, hsBitVector& cache) const
{
IEnableLeaf(idx, cache);
}
void plSpaceTree::EnableLeaves(const hsTArray<Int16>& list, hsBitVector& cache) const
{
if( IsEmpty() )
return;
int i;
for( i = 0; i < list.GetCount(); i++ )
{
IEnableLeaf(list[i], cache);
}
}
void plSpaceTree::IHarvestAndCullEnabledLeaves(Int16 subIdx, const hsBitVector& cache, hsTArray<Int16>& list) const
{
if( !cache.IsBitSet(subIdx) )
return;
const plSpaceTreeNode& subRoot = fTree[subIdx];
plVolumeCullResult res = fCullFunc->Test(subRoot.fWorldBounds);
if( res == kVolumeCulled )
return;
if( subRoot.fFlags & plSpaceTreeNode::kIsLeaf )
{
list.Append(subIdx);
}
else
{
if( res == kVolumeClear )
{
IHarvestEnabledLeaves(subRoot.fChildren[0], cache, list);
IHarvestEnabledLeaves(subRoot.fChildren[1], cache, list);
}
else
{
IHarvestAndCullEnabledLeaves(subRoot.fChildren[0], cache, list);
IHarvestAndCullEnabledLeaves(subRoot.fChildren[1], cache, list);
}
}
}
void plSpaceTree::IHarvestEnabledLeaves(Int16 subIdx, const hsBitVector& cache, hsTArray<Int16>& list) const
{
if( !cache.IsBitSet(subIdx) )
return;
const plSpaceTreeNode& subRoot = fTree[subIdx];
if( subRoot.fFlags & plSpaceTreeNode::kIsLeaf )
{
plProfile_Inc(HarvestLeaves);
list.Append(subIdx);
}
else
{
IHarvestEnabledLeaves(subRoot.fChildren[0], cache, list);
IHarvestEnabledLeaves(subRoot.fChildren[1], cache, list);
}
}
void plSpaceTree::HarvestEnabledLeaves(plVolumeIsect* cull, const hsBitVector& cache, hsTArray<Int16>& list) const
{
if( IsEmpty() )
return;
if( fCullFunc = cull )
IHarvestAndCullEnabledLeaves(fRoot, cache, list);
else
IHarvestEnabledLeaves(fRoot, cache, list);
}
void plSpaceTree::IHarvestEnabledLeaves(Int16 subIdx, const hsBitVector& cache, hsBitVector& totList, hsBitVector& list) const
{
if( IsDisabled(subIdx) )
return;
if( totList.IsBitSet(subIdx) )
return;
totList.SetBit(subIdx);
const plSpaceTreeNode& subRoot = fTree[subIdx];
if( subRoot.fFlags & plSpaceTreeNode::kIsLeaf )
{
plProfile_Inc(HarvestLeaves);
list.SetBit(subIdx);
}
else
{
IHarvestEnabledLeaves(subRoot.fChildren[0], cache, totList, list);
IHarvestEnabledLeaves(subRoot.fChildren[1], cache, totList, list);
}
}
void plSpaceTree::MoveLeaf(Int16 idx, const hsBounds3Ext& bnd)
{
hsAssert(idx == fTree[idx].fLeafIndex, "Some scrambling of indices");
fTree[idx].fWorldBounds = bnd;
while( idx != kRootParent )
{
if( fTree[idx].fFlags & plSpaceTreeNode::kDirty )
{
idx = kRootParent;
}
else
{
fTree[idx].fFlags |= plSpaceTreeNode::kDirty;
idx = fTree[idx].fParent;
}
}
}
void plSpaceTree::HarvestLeaves(Int16 subRoot, hsBitVector& totList, hsBitVector& list) const
{
if( !IsEmpty() )
{
if( fCache )
{
IHarvestEnabledLeaves(subRoot, *fCache, totList, list);
}
else
{
IHarvestLeaves(fTree[subRoot], totList, list);
}
}
}
void plSpaceTree::HarvestLeaves(hsBitVector& totList, hsBitVector& list) const
{
if( !IsEmpty() )
IHarvestLeaves(fTree[fRoot], totList, list);
}
void plSpaceTree::HarvestLeaves(hsBitVector& list) const
{
if( !IsEmpty() )
IHarvestLeaves(fTree[fRoot], scratchTotVec, list);
scratchTotVec.Clear();
}
void plSpaceTree::HarvestLeaves(plVolumeIsect* cull, hsBitVector& list) const
{
if( !IsEmpty() )
{
if( fCullFunc = cull )
IHarvestAndCullLeaves(fTree[fRoot], scratchTotVec, list);
else
IHarvestLeaves(fTree[fRoot], scratchTotVec, list);
}
scratchTotVec.Clear();
}
void plSpaceTree::HarvestLeaves(Int16 subRoot, hsBitVector& list) const
{
IHarvestLeaves(GetNode(subRoot), scratchTotVec, list);
scratchTotVec.Clear();
}
void plSpaceTree::HarvestLeaves(plVolumeIsect* cull, hsTArray<Int16>& list) const
{
if( !IsEmpty() )
{
scratchBitVec.Clear();
HarvestLeaves(cull, scratchBitVec);
BitVectorToList(list, scratchBitVec);
}
}
void plSpaceTree::HarvestLeaves(hsTArray<Int16>& list) const
{
if( !IsEmpty() )
{
scratchBitVec.Clear();
HarvestLeaves(scratchBitVec);
BitVectorToList(list, scratchBitVec);
}
}
void plSpaceTree::HarvestLeaves(Int16 subRoot, hsTArray<Int16>& list) const
{
if( !IsEmpty() )
{
scratchBitVec.Clear();
HarvestLeaves(subRoot, scratchBitVec);
BitVectorToList(list, scratchBitVec);
}
}
void plSpaceTree::BitVectorToList(hsTArray<Int16>& list, const hsBitVector& bitVec) const
{
#if 0 // added func to bitvector
int i;
for( i = 0; i < fNumLeaves; i++ )
{
if( bitVec.IsBitSet(i) )
list.Append(i);
}
#else // added func to bitvector
bitVec.Enumerate(list);
#endif // added func to bitvector
}
void plSpaceTree::IHarvestAndCullLeaves(const plSpaceTreeNode& subRoot, hsBitVector& totList, hsBitVector& list) const
{
if( subRoot.fFlags & plSpaceTreeNode::kDisabled )
return;
int idx = &subRoot - &fTree[0];
if( totList.IsBitSet(idx) )
return;
hsAssert(fCullFunc, "Oops");
plVolumeCullResult res = fCullFunc->Test(subRoot.fWorldBounds);
if( res == kVolumeCulled )
return;
if( subRoot.fFlags & plSpaceTreeNode::kIsLeaf )
{
totList.SetBit(idx);
plProfile_Inc(HarvestLeaves);
list.SetBit(subRoot.fLeafIndex);
}
else
{
if( res == kVolumeClear )
{
totList.SetBit(idx);
IHarvestLeaves(fTree[subRoot.fChildren[0]], totList, list);
IHarvestLeaves(fTree[subRoot.fChildren[1]], totList, list);
}
else
{
IHarvestAndCullLeaves(fTree[subRoot.fChildren[0]], totList, list);
IHarvestAndCullLeaves(fTree[subRoot.fChildren[1]], totList, list);
}
}
}
void plSpaceTree::IHarvestAndCullLeaves(const plSpaceTreeNode& subRoot, hsTArray<Int16>& list) const
{
if( subRoot.fFlags & plSpaceTreeNode::kDisabled )
return;
hsAssert(fCullFunc, "Oops");
plVolumeCullResult res = fCullFunc->Test(subRoot.fWorldBounds);
if( res == kVolumeCulled )
return;
if( subRoot.fFlags & plSpaceTreeNode::kIsLeaf )
{
plProfile_Inc(HarvestLeaves);
list.Append(subRoot.fLeafIndex);
}
else
{
if( res == kVolumeClear )
{
IHarvestLeaves(fTree[subRoot.fChildren[0]], list);
IHarvestLeaves(fTree[subRoot.fChildren[1]], list);
}
else
{
IHarvestAndCullLeaves(fTree[subRoot.fChildren[0]], list);
IHarvestAndCullLeaves(fTree[subRoot.fChildren[1]], list);
}
}
}
void plSpaceTree::IHarvestLeaves(const plSpaceTreeNode& subRoot, hsBitVector& totList, hsBitVector& list) const
{
if( subRoot.fFlags & plSpaceTreeNode::kDisabled )
return;
int idx = &subRoot - &fTree[0];
if( totList.IsBitSet(idx) )
return;
totList.SetBit(idx);
if( subRoot.fFlags & plSpaceTreeNode::kIsLeaf )
{
plProfile_Inc(HarvestLeaves);
list.SetBit(subRoot.fLeafIndex);
}
else
{
IHarvestLeaves(fTree[subRoot.fChildren[0]], totList, list);
IHarvestLeaves(fTree[subRoot.fChildren[1]], totList, list);
}
}
void plSpaceTree::IHarvestLeaves(const plSpaceTreeNode& subRoot, hsTArray<Int16>& list) const
{
if( subRoot.fFlags & plSpaceTreeNode::kDisabled )
return;
if( subRoot.fFlags & plSpaceTreeNode::kIsLeaf )
{
plProfile_Inc(HarvestLeaves);
list.Append(subRoot.fLeafIndex);
}
else
{
IHarvestLeaves(fTree[subRoot.fChildren[0]], list);
IHarvestLeaves(fTree[subRoot.fChildren[1]], list);
}
}
void plSpaceTree::Read(hsStream* s, hsResMgr* mgr)
{
plCreatable::Read(s, mgr);
fRoot = s->ReadSwap16();
fNumLeaves = UInt16(s->ReadSwap32());
UInt32 n = s->ReadSwap32();
fTree.SetCount(n);
int i;
for( i = 0; i < n; i++ )
fTree[i].Read(s);
}
void plSpaceTree::Write(hsStream* s, hsResMgr* mgr)
{
plCreatable::Write(s, mgr);
s->WriteSwap16(fRoot);
s->WriteSwap32(fNumLeaves);
s->WriteSwap32(fTree.GetCount());
int i;
for( i = 0; i < fTree.GetCount(); i++ )
{
fTree[i].Write(s);
}
}
// Some debug only stuff
void plSpaceTree::HarvestLevel(int level, hsTArray<Int16>& list) const
{
if( !IsEmpty() )
{
IHarvestLevel(fRoot, level, 0, list);
}
}
void plSpaceTree::IHarvestLevel(Int16 subRoot, int level, int currLevel, hsTArray<Int16>& list) const
{
if( level == currLevel )
{
list.Append(subRoot);
return;
}
if( IsLeaf(subRoot) )
return;
IHarvestLevel(GetNode(subRoot).GetChild(0), level, currLevel+1, list);
IHarvestLevel(GetNode(subRoot).GetChild(1), level, currLevel+1, list);
}