|
|
|
|
|
|
|
vs.1.1
|
|
|
|
|
|
|
|
dcl_position v0
|
|
|
|
dcl_color v5
|
|
|
|
|
|
|
|
// Store our input position in world space in r6
|
|
|
|
m4x3 r6, v0, c21; // v0 * l2w
|
|
|
|
// Fill out our w (m4x3 doesn't touch w).
|
|
|
|
mov r6.w, c16.zzzz;
|
|
|
|
|
|
|
|
//
|
|
|
|
|
|
|
|
// Input diffuse v5 color is:
|
|
|
|
// v5.r = overall transparency
|
|
|
|
// v5.g = reflection strength (transparency)
|
|
|
|
// v5.b = overall wave scaling
|
|
|
|
//
|
|
|
|
// v5.a is:
|
|
|
|
// v5.w = 1/(2.f * edge length)
|
|
|
|
// So per wave filtering is:
|
|
|
|
// min(max( (waveLen * v5.wwww) - 1), 0), 1.f);
|
|
|
|
// So a wave effect starts dying out when the wave is 4 times the sampling frequency,
|
|
|
|
// and is completely filtered at 2 times sampling frequency.
|
|
|
|
|
|
|
|
// We'd like to make this autocalculated based on the depth of the water.
|
|
|
|
// The frequency filtering (v5.w) still needs to be calculated offline, because
|
|
|
|
// it's dependent on edge length, but the first 3 filterings can be calculated
|
|
|
|
// based on this vertex.
|
|
|
|
// Basically, we want the transparency, reflection strength, and wave scaling
|
|
|
|
// to go to zero as the water depth goes to zero. Linear falloffs are as good
|
|
|
|
// a place to start as any.
|
|
|
|
//
|
|
|
|
// depth = waterlevel - r6.z => depth in feet (may be negative)
|
|
|
|
// depthNorm = depth / depthFalloff => zero at watertable, one at depthFalloff beneath
|
|
|
|
// atten = minAtten + depthNorm * (maxAtten - minAtten);
|
|
|
|
// These are all vector ops.
|
|
|
|
// This provides separate ramp ups for each of the channels (they reach full unfiltered
|
|
|
|
// values at different depths), but doesn't provide separate controls for where they
|
|
|
|
// go to zero (they all go to zero at zero depth). For that we need an offset. An offset
|
|
|
|
// in feet (depth) is probably the most intuitive. So that changes the first calculation
|
|
|
|
// of depth to:
|
|
|
|
// depth = waterlevel - r6.z + offset
|
|
|
|
// = (waterlevel + offset) - r6.z
|
|
|
|
// And since we only need offsets for 3 channels, we can make the waterlevel constant
|
|
|
|
// waterlevel[chan] = watertableheight + offset[chan],
|
|
|
|
// with waterlevel.w = watertableheight.
|
|
|
|
//
|
|
|
|
// So:
|
|
|
|
// c25 = waterlevel + offset
|
|
|
|
// c26 = (maxAtten - minAtten) / depthFalloff
|
|
|
|
// c27 = minAtten.
|
|
|
|
// And in particular:
|
|
|
|
// c25.w = waterlevel
|
|
|
|
// c26.w = 1.f;
|
|
|
|
// c27.w = 0;
|
|
|
|
// So r4.w is the depth of this vertex in feet.
|
|
|
|
|
|
|
|
// Dot our position with our direction vectors.
|
|
|
|
mul r0, c8, r6.xxxx;
|
|
|
|
mad r0, c9, r6.yyyy, r0;
|
|
|
|
|
|
|
|
//
|
|
|
|
// dist = mad( dist, kFreq.xyzw, kPhase.xyzw);
|
|
|
|
mul r0, r0, c5;
|
|
|
|
add r0, r0, c6;
|
|
|
|
//
|
|
|
|
// // Now we need dist mod'd into range [-Pi..Pi]
|
|
|
|
// dist *= rcp(kTwoPi);
|
|
|
|
rcp r4, c15.wwww;
|
|
|
|
add r0, r0, c15.zzzz;
|
|
|
|
mul r0, r0, r4;
|
|
|
|
// dist = frac(dist);
|
|
|
|
expp r1.y, r0.xxxx
|
|
|
|
mov r1.x, r1.yyyy
|
|
|
|
expp r1.y, r0.zzzz
|
|
|
|
mov r1.z, r1.yyyy
|
|
|
|
expp r1.y, r0.wwww
|
|
|
|
mov r1.w, r1.yyyy
|
|
|
|
expp r1.y, r0.yyyy
|
|
|
|
// dist *= kTwoPi;
|
|
|
|
mul r0, r1, c15.wwww;
|
|
|
|
// dist += -kPi;
|
|
|
|
sub r0, r0, c15.zzzz;
|
|
|
|
|
|
|
|
//
|
|
|
|
// sincos(dist, sinDist, cosDist);
|
|
|
|
// sin = r0 + r0^3 * vSin.y + r0^5 * vSin.z
|
|
|
|
// cos = 1 + r0^2 * vCos.y + r0^4 * vCos.z
|
|
|
|
mul r1, r0, r0; // r0^2
|
|
|
|
mul r2, r1, r0; // r0^3 - probably stall
|
|
|
|
mul r3, r1, r1; // r0^4
|
|
|
|
mul r4, r1, r2; // r0^5
|
|
|
|
mul r5, r2, r3; // r0^7
|
|
|
|
|
|
|
|
mul r1, r1, c14.yyyy; // r1 = r0^2 * vCos.y
|
|
|
|
mad r2, r2, c13.yyyy, r0; // r2 = r0 + r0^3 * vSin.y
|
|
|
|
add r1, r1, c14.xxxx; // r1 = 1 + r0^2 * vCos.y
|
|
|
|
mad r2, r4, c13.zzzz, r2; // r2 = r0 + r0^3 * vSin.y + r0^5 * vSin.z
|
|
|
|
mad r1, r3, c14.zzzz, r1; // r1 = 1 + r0^2 * vCos.y + r0^4 * vCos.z
|
|
|
|
|
|
|
|
// r0^7 & r0^6 terms
|
|
|
|
mul r4, r4, r0; // r0^6
|
|
|
|
mad r2, r5, c13.wwww, r2;
|
|
|
|
mad r1, r4, c14.wwww, r1;
|
|
|
|
|
|
|
|
// Calc our depth based filtering here into r4 (because we don't use it again
|
|
|
|
// after here, and we need our filtering shortly).
|
|
|
|
sub r4, c25, r6.zzzz;
|
|
|
|
mul r4, r4, c26;
|
|
|
|
add r4, r4, c27;
|
|
|
|
// Clamp .xyz to range [0..1]
|
|
|
|
min r4.xyz, r4, c16.zzzz;
|
|
|
|
max r4.xyz, r4, c16.xxxx;
|
|
|
|
|
|
|
|
// Calc our filter (see above).
|
|
|
|
mul r11, v5.wwww, c24;
|
|
|
|
max r11, r11, c16.xxxx;
|
|
|
|
min r11, r11, c16.zzzz;
|
|
|
|
|
|
|
|
//mov r2, r1;
|
|
|
|
// r2 == sinDist
|
|
|
|
// r1 == cosDist
|
|
|
|
// sinDist *= filter;
|
|
|
|
mul r2, r2, r11;
|
|
|
|
// sinDist *= kAmplitude.xyzw
|
|
|
|
mul r5, r2, c7;
|
|
|
|
// r5 is now T = sum(Ai * sin())
|
|
|
|
// height = dp4(sinDist, kOne);
|
|
|
|
// accumPos.z += height; (but accumPos.z is currently 0).
|
|
|
|
dp4 r8.x, r5, c16.zzzz;
|
|
|
|
mul r8.y, r8.x, r4.z;
|
|
|
|
add r8.z, r8.y, c25.w;
|
|
|
|
max r6.z, r6.z, r8.z; // CLAMP
|
|
|
|
// r8.x == wave height relative to 0
|
|
|
|
// r8.y == dampened wave relative to 0
|
|
|
|
// r8.z == dampened wave height in world space
|
|
|
|
// r6.z == wave height clamped to never go beneath ground level
|
|
|
|
//
|
|
|
|
// cosDist *= kAmplitude.xyzw; // Combine?
|
|
|
|
mul r7, r1, c7;
|
|
|
|
// cosDist *= filter;
|
|
|
|
mul r7, r7, r11;
|
|
|
|
// r7 is now M = sum(Ai * cos())
|
|
|
|
|
|
|
|
// Okay, here we go:
|
|
|
|
// W == sum(k w Dir.x^2 A sin())
|
|
|
|
// V == sum(k w Dir.x Dir.y A sin())
|
|
|
|
// U == sum(k w Dir.y^2 A sin())
|
|
|
|
//
|
|
|
|
// T == sum(A sin())
|
|
|
|
//
|
|
|
|
// S == sum(k Dir.x A cos())
|
|
|
|
// R == sum(k Dir.y A cos())
|
|
|
|
//
|
|
|
|
// Q == sum(k w A cos())
|
|
|
|
//
|
|
|
|
// M == sum(A cos())
|
|
|
|
//
|
|
|
|
// P == sum(w Dir.x A cos())
|
|
|
|
// N == sum(w Dir.y A cos())
|
|
|
|
//
|
|
|
|
// Then:
|
|
|
|
// Pos = (in.x + S, in.y + R, waterheight + T)
|
|
|
|
//
|
|
|
|
// Bin = (1 - W, -V, P)
|
|
|
|
// Tan = (-V, 1 - U, N)
|
|
|
|
// Nor = (-P, -N, 1 - Q)
|
|
|
|
//
|
|
|
|
// But we want the transpose of that to go into r1-r3
|
|
|
|
|
|
|
|
dp4 r10.x, r7, c29;
|
|
|
|
add r6.x, r6.x, r10.x;
|
|
|
|
dp4 r10.x, r7, c30;
|
|
|
|
add r6.y, r6.y, r10.x;
|
|
|
|
|
|
|
|
dp4 r1.x, r5, -c34;
|
|
|
|
dp4 r2.x, r5, -c35;
|
|
|
|
dp4 r3.x, r7, c31;
|
|
|
|
add r1.x, r1.xxxx, c16.zzzz;
|
|
|
|
|
|
|
|
dp4 r1.y, r5, -c35;
|
|
|
|
dp4 r2.y, r5, -c36;
|
|
|
|
dp4 r3.y, r7, c32;
|
|
|
|
add r2.y, r2.yyyy, c16.zzzz;
|
|
|
|
|
|
|
|
dp4 r1.z, r7, -c31;
|
|
|
|
dp4 r2.z, r7, -c32;
|
|
|
|
dp4 r3.z, r5, -c33;
|
|
|
|
add r3.z, r3.zzzz, c16.zzzz;
|
|
|
|
|
|
|
|
|
|
|
|
// Calculate our normalized vector from camera to vtx.
|
|
|
|
// We'll use that a couple of times coming up.
|
|
|
|
sub r5, r6, c17;
|
|
|
|
dp3 r10.x, r5, r5;
|
|
|
|
rsq r10.x, r10.x;
|
|
|
|
mul r5, r5, r10.xxxx; // r0 = D
|
|
|
|
rcp r5.w, r10.x;
|
|
|
|
|
|
|
|
// Calculate our specular attenuation from and into r5.w.
|
|
|
|
// r5.w starts off the distance from vtx to camera.
|
|
|
|
// Once we've turned it into an attenuation factor, we
|
|
|
|
// scale the x and y of our normal map (through the transform bases)
|
|
|
|
// so that in the distance, the normal map is flat. Note that the
|
|
|
|
// geometry in the distance isn't necessarily flat. We want to apply
|
|
|
|
// this scale to the normal read from the normal map before it is
|
|
|
|
// transformed into surface space.
|
|
|
|
add r5.w, r5.w, c11.x;
|
|
|
|
mul r5.w, r5.w, c11.y;
|
|
|
|
min r5.w, r5.w, c16.z;
|
|
|
|
max r5.w, r5.w, c16.x;
|
|
|
|
mul r5.w, r5.w, r5.w; // Square it to account for perspective
|
|
|
|
mul r5.w, r5.w, c11.z;
|
|
|
|
|
|
|
|
|
|
|
|
// Normalize?
|
|
|
|
|
|
|
|
// We can either calculate an orthonormal basis from the
|
|
|
|
// computed normal, with Binormal = (0,1,0) X Normal, Tangent = Normal X (1,0,0),
|
|
|
|
// or compute our basis directly from the partial derivatives, with
|
|
|
|
// Binormal = (1, 0, -cosX), Tangent = (0, 1, -cosY), Normal = (cosX, cosY, 1)
|
|
|
|
//
|
|
|
|
// These work out to identically the same result, so we'll compute directly
|
|
|
|
// from the partials because it takes 2 fewer instructions.
|
|
|
|
//
|
|
|
|
// Note that our basis is NOT orthonormal. The Normal is equal to
|
|
|
|
// Binormal X Tangent, but Dot(Binormal, Tangent) != 0. The Binormal and Tangents
|
|
|
|
// are both correct tangents to the surface, and their projections on the XY plane
|
|
|
|
// are 90 degrees apart, but in 3-space, they are not orthogonal. Practical implications?
|
|
|
|
// Not really. I'm actually not really sure which is more "proper" for bump mapping.
|
|
|
|
//
|
|
|
|
// Note also that we add when we should subtract and subtract when we should
|
|
|
|
// add, so that r1, r2, r3 aren't Binormal, Tangent, Normal, but the rows
|
|
|
|
// of our transform, (Bx, Tx, Nx), (By, Ty, Ny), (Bz, Tz, Nz). See below for
|
|
|
|
// explanation.
|
|
|
|
//
|
|
|
|
// Binormal = Y % Normal
|
|
|
|
// Cross product3 is:
|
|
|
|
// mul res.xyz, a.yzx, b.zxy
|
|
|
|
// mad res.xyz, -a.zxy, b.yzx, res.xyz
|
|
|
|
// mul r1.xyz, c16.zxx, r3.zxy;
|
|
|
|
// mad r1.xyz, -c16.xxz, r3.yzx, r1.xyz;
|
|
|
|
|
|
|
|
// Tangent = Normal % X
|
|
|
|
// mul r2.xyz, r3.yzx, c16.xzx;
|
|
|
|
// mad r2.xyz, -r3.zxy, c16.xxz, r2;
|
|
|
|
|
|
|
|
//mad r1, r5.wwww, c16.zxxx, r7.zzxz;
|
|
|
|
//mad r2, r5.wwww, c16.xzxx, r7.zzyz;
|
|
|
|
//mul r3.xy, r3.xy, r5.wwww;
|
|
|
|
|
|
|
|
|
|
|
|
// Note that we're swapping z and y to match our environment map tools in max.
|
|
|
|
// We do this through our normal map transform (oT1, oT2, oT3), making it
|
|
|
|
// a concatenation of:
|
|
|
|
//
|
|
|
|
// rotate about Z (blue) to turn our map into the wind
|
|
|
|
// windRot = | dirY -dirX 0 |
|
|
|
|
// | dirX dirY 0 |
|
|
|
|
// | 0 0 1 |
|
|
|
|
//
|
|
|
|
// swap our Y and Z axes to match our environment map
|
|
|
|
// swapYZ = | 1 0 0 |
|
|
|
|
// | 0 0 1 |
|
|
|
|
// | 0 1 0 |
|
|
|
|
//
|
|
|
|
// rotate the normal into the surface's tangent space basis
|
|
|
|
// basis = | Bx Tx Nx |
|
|
|
|
// | By Ty Ny |
|
|
|
|
// | Bz Tz Nz |
|
|
|
|
//
|
|
|
|
// Note that we've constucted the basis by taking advantage of the
|
|
|
|
// matrix being a pure rotation, as noted below, so r1, r2 and r3
|
|
|
|
// are actually constructed as:
|
|
|
|
// basis = | Bx -By -Bz |
|
|
|
|
// | -Tx Ty -Tz |
|
|
|
|
// | -Nx -Ny -Nz |
|
|
|
|
//
|
|
|
|
// Then the final normal map transform is:
|
|
|
|
//
|
|
|
|
// basis * swapYZ * windRot [ * normal ]
|
|
|
|
|
|
|
|
|
|
|
|
// sub r1.w, c17.x, r6.x;
|
|
|
|
// sub r2.w, c17.z, r6.z;
|
|
|
|
// sub r3.w, c17.y, r6.y;
|
|
|
|
|
|
|
|
// Big note here. All this math can blow up if the camera position
|
|
|
|
// is outside the environment sphere. It's assumed that's dealt
|
|
|
|
// with in the app setting up the constants. For that reason, the
|
|
|
|
// camera position used here might not be the real local camera position,
|
|
|
|
// which is needed for the angular attenuation, so we burn another constant
|
|
|
|
// with our pseudo-camera position. To restrain the pseudo-camera from
|
|
|
|
// leaving the sphere, we make:
|
|
|
|
// pseudoPos = envCenter + (realPos - envCenter) * dist * R / (dist + R)
|
|
|
|
// where dist = |realPos - envCenter|
|
|
|
|
|
|
|
|
// So, our "finitized" eyeray is:
|
|
|
|
// camPos + D * t - envCenter = D * t - (envCenter - camPos)
|
|
|
|
// with
|
|
|
|
// D = (pos - camPos) / |pos - camPos| // normalized usual eyeray
|
|
|
|
// and
|
|
|
|
// t = D dot F + sqrt( (D dot F)^2 - G )
|
|
|
|
// with
|
|
|
|
// F = (envCenter - camPos) => c19.xyz
|
|
|
|
// G = F^2 - R^2 => c19.w
|
|
|
|
// R = environment radius. => unused
|
|
|
|
//
|
|
|
|
// This all derives from the positive root of equation
|
|
|
|
// (camPos + (pos - camPos) * t - envCenter)^2 = R^2,
|
|
|
|
// In other words, where on a sphere of radius R centered about envCenter
|
|
|
|
// does the ray from the real camera position through this point hit.
|
|
|
|
//
|
|
|
|
// Note that F, G, and R are all constants (one point, two scalars).
|
|
|
|
//
|
|
|
|
// So first we calculate D into r0,
|
|
|
|
// then D dot F into r10.x,
|
|
|
|
// then (D dot F)^2 - G into r10.y
|
|
|
|
// then rsq( (D dot F)^2 - G ) into r9.x;
|
|
|
|
// then t = r10.z = r10.x + r10.y * r9.x;
|
|
|
|
// and
|
|
|
|
// r0 = D * t - (envCenter - camPos)
|
|
|
|
// = r0 * r10.zzzz - F;
|
|
|
|
//
|
|
|
|
mov r0, r5; // r0 = D
|
|
|
|
|
|
|
|
dp3 r10.x, r0, c19; // r10.x = D dot F
|
|
|
|
mad r10.y, r10.x, r10.x, -c19.w; // r10.y = (D dot F)^2 - G
|
|
|
|
|
|
|
|
rsq r9.x, r10.y; // r9.x = 1/SQRT((D dot F)^2 - G)
|
|
|
|
|
|
|
|
mad r10.z, r10.y, r9.x, r10.x; // r10.z = D dot F + SQRT((D dot F)^2 - G)
|
|
|
|
|
|
|
|
mad r0.xyz, r0, r10.zzz, -c19.xyz; // r0.xyz = D * t - (envCenter - camPos)
|
|
|
|
|
|
|
|
// ATI 9000 is having trouble with eyeVec as computed. Normalizing seems to get it over the hump.
|
|
|
|
dp3 r10.x, r0, r0;
|
|
|
|
rsq r9.x, r10.x;
|
|
|
|
mul r0.xyz, r0.xyz, r9.xxx;
|
|
|
|
|
|
|
|
mov r1.w, -r0.x;
|
|
|
|
mov r2.w, -r0.y;
|
|
|
|
mov r3.w, -r0.z;
|
|
|
|
|
|
|
|
mov r0.zw, c16.zzxz;
|
|
|
|
|
|
|
|
dp3 r0.x, r1, r1;
|
|
|
|
rsq r0.xy, r0.x;
|
|
|
|
mul r0.x, r0.x, r5.w;
|
|
|
|
mul oT1, r1.xyzw, r0.xxyw;
|
|
|
|
// mul r8, r1.xyzw, r0.xxxw; // VISUAL
|
|
|
|
mul r11.x, r1.z, r0.y;
|
|
|
|
|
|
|
|
|
|
|
|
dp3 r0.x, r2, r2;
|
|
|
|
rsq r0.xy, r0.x;
|
|
|
|
mul r0.x, r0.x, r5.w;
|
|
|
|
mul oT3, r2.xyzw, r0.xxyw;
|
|
|
|
// mul r9, r2.xyzw, r0.xxxw; // VISUAL
|
|
|
|
mul r11.y, r2.z, r0.y;
|
|
|
|
|
|
|
|
dp3 r0.x, r3, r3;
|
|
|
|
rsq r0.xy, r0.x;
|
|
|
|
mul r0.x, r0.x, r5.w;
|
|
|
|
mul oT2, r3.xyzw, r0.xxyw;
|
|
|
|
// mul r9, r3.xyzw, r0.xxxw; // VISUAL
|
|
|
|
mul r11.z, r3.z, r0.y;
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
// Want:
|
|
|
|
// oT1 = (BIN.x, TAN.x, NORM.x, view2pos.x)
|
|
|
|
// oT2 = (BIN.y, TAN.y, NORM.y, view2pos.y)
|
|
|
|
// ot3 = (BIN.z, TAN.z, NORM.z, view2pos.z)
|
|
|
|
// with BIN, TAN, and NORM normalized.
|
|
|
|
// Unnormalized, we have
|
|
|
|
// BIN = (1, 0, -r7.x) where r7 == accumCos
|
|
|
|
// TAN = (0, 1, -r7.y)
|
|
|
|
// NORM= (r7.x, r7.y, 1)
|
|
|
|
// So, unnormalized, we have
|
|
|
|
// oT1 = (1, 0, r7.x, view2pos.x)
|
|
|
|
// oT2 = (0, 1, r7.y, view2pos.y)
|
|
|
|
// oT3 = (-r7.x, -r7.y, 1, view2pos.z)
|
|
|
|
// which is just reversing the signs on the accumCos
|
|
|
|
// terms above. So the normalized version is just
|
|
|
|
// reversing the signs on the normalized version above.
|
|
|
|
*/
|
|
|
|
//mov oT3, r4;
|
|
|
|
|
|
|
|
//
|
|
|
|
// // Transform position to screen
|
|
|
|
//
|
|
|
|
//
|
|
|
|
//m4x3 r6, v0, c21; // HACKAGE
|
|
|
|
//mov r6.w, c16.z; // HACKAGE
|
|
|
|
//m4x4 oPos, r6, c0; // ADDFOG
|
|
|
|
m4x4 r9, r6, c0;
|
|
|
|
add r10.x, r9.w, c28.x;
|
|
|
|
mul oFog, r10.x, c28.y;
|
|
|
|
//mov oFog, c16.zzzz; // TESTFOGHACK
|
|
|
|
mov oPos, r9;
|
|
|
|
|
|
|
|
// Transform our uvw
|
|
|
|
mul r0.x, v0.xxxx, c10.xxxx;
|
|
|
|
mul r0.y, v0.yyyy, c10.xxxx;
|
|
|
|
|
|
|
|
//mov r0.zw, c16.xxxz;
|
|
|
|
mov oT0, r0
|
|
|
|
|
|
|
|
// Questionble attenuation follows
|
|
|
|
// vector from this point to camera and normalize stashed in r5
|
|
|
|
// Dot that with the computed normal
|
|
|
|
dp3 r1.x, -r5, r11;
|
|
|
|
mul r1.x, r1.x, v5.z;
|
|
|
|
// dp3 r1.x, r5, r3; // if you want the adjusted normal, you'll need to normalize/swizzle r3
|
|
|
|
// Map dot=1 => 0, dot=0 => 1
|
|
|
|
sub r1.xyzw, c16.zzzz, r1.xxxx;
|
|
|
|
add r1.w, r1.wwww, c16.zzzz;
|
|
|
|
mul r1.w, r1.wwww, c16.yyyy;
|
|
|
|
// No need to clamp, since the destination register (in the pixel shader)
|
|
|
|
// will saturate [0..1] anyway.
|
|
|
|
//%%% mul r1.w, r1.w, r4.x;
|
|
|
|
//%%% mul r1.xyz, r1.xyz, r4.yyy;
|
|
|
|
mul r1, r1, r4.yyyx; // HACKTESTCOLOR
|
|
|
|
//mul r1.xyz, r1, r8.xxx; // WAVEFACE
|
|
|
|
mul r1.w, r1.wwww, v5.xxxx;
|
|
|
|
mul r1.w, r1.wwww, c4.wwww;
|
|
|
|
mul oD0, r1, c20;
|
|
|
|
|
|
|
|
mov oD1, c4; // SEENORM
|
|
|
|
//mov oD1, c16.xxxx;
|
|
|
|
// mov oD1, r4.yyyy;
|
|
|
|
|
|
|
|
//mov oD1, c16.zzzz; // HACKAGE
|
|
|
|
// mov oD1, r9;
|
|
|
|
// mov oD1, r8.xzyw;
|