|
|
|
/*==LICENSE==*
|
|
|
|
|
|
|
|
CyanWorlds.com Engine - MMOG client, server and tools
|
|
|
|
Copyright (C) 2011 Cyan Worlds, Inc.
|
|
|
|
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
|
|
|
|
Additional permissions under GNU GPL version 3 section 7
|
|
|
|
|
|
|
|
If you modify this Program, or any covered work, by linking or
|
|
|
|
combining it with any of RAD Game Tools Bink SDK, Autodesk 3ds Max SDK,
|
|
|
|
NVIDIA PhysX SDK, Microsoft DirectX SDK, OpenSSL library, Independent
|
|
|
|
JPEG Group JPEG library, Microsoft Windows Media SDK, or Apple QuickTime SDK
|
|
|
|
(or a modified version of those libraries),
|
|
|
|
containing parts covered by the terms of the Bink SDK EULA, 3ds Max EULA,
|
|
|
|
PhysX SDK EULA, DirectX SDK EULA, OpenSSL and SSLeay licenses, IJG
|
|
|
|
JPEG Library README, Windows Media SDK EULA, or QuickTime SDK EULA, the
|
|
|
|
licensors of this Program grant you additional
|
|
|
|
permission to convey the resulting work. Corresponding Source for a
|
|
|
|
non-source form of such a combination shall include the source code for
|
|
|
|
the parts of OpenSSL and IJG JPEG Library used as well as that of the covered
|
|
|
|
work.
|
|
|
|
|
|
|
|
You can contact Cyan Worlds, Inc. by email legal@cyan.com
|
|
|
|
or by snail mail at:
|
|
|
|
Cyan Worlds, Inc.
|
|
|
|
14617 N Newport Hwy
|
|
|
|
Mead, WA 99021
|
|
|
|
|
|
|
|
*==LICENSE==*/
|
|
|
|
|
|
|
|
#include "hsTypes.h"
|
|
|
|
#include "plAvMeshSmooth.h"
|
|
|
|
|
|
|
|
#include "plGeometrySpan.h"
|
|
|
|
#include "plAccessGeometry.h"
|
|
|
|
#include "plAccessTriSpan.h"
|
|
|
|
|
|
|
|
#include "hsFastMath.h"
|
|
|
|
|
|
|
|
class EdgeBin
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
UInt16 fVtx;
|
|
|
|
UInt16 fCount;
|
|
|
|
|
|
|
|
EdgeBin() : fVtx(0), fCount(0) {}
|
|
|
|
};
|
|
|
|
|
|
|
|
void plAvMeshSmooth::FindEdges(UInt32 maxVtxIdx, UInt32 nTris, UInt16* idxList, hsTArray<UInt16>& edgeVerts)
|
|
|
|
{
|
|
|
|
hsTArray<EdgeBin>* bins = TRACKED_NEW hsTArray<EdgeBin>[maxVtxIdx+1];
|
|
|
|
|
|
|
|
hsBitVector edgeVertBits;
|
|
|
|
// For each vert pair (edge) in idxList
|
|
|
|
int i;
|
|
|
|
for( i = 0; i < nTris; i++ )
|
|
|
|
{
|
|
|
|
int j;
|
|
|
|
for( j = 0; j < 3; j++ )
|
|
|
|
{
|
|
|
|
int jPlus = j < 2 ? j+1 : 0;
|
|
|
|
int idx0 = idxList[i*3 + j];
|
|
|
|
int idx1 = idxList[i*3 + jPlus];
|
|
|
|
|
|
|
|
int lo, hi;
|
|
|
|
|
|
|
|
// Look in the LUT for the lower index.
|
|
|
|
if( idx0 < idx1 )
|
|
|
|
{
|
|
|
|
lo = idx0;
|
|
|
|
hi = idx1;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
lo = idx1;
|
|
|
|
hi = idx0;
|
|
|
|
}
|
|
|
|
|
|
|
|
hsTArray<EdgeBin>& loBin = bins[lo];
|
|
|
|
// In that bucket, look for the higher index.
|
|
|
|
int k;
|
|
|
|
for( k = 0; k < loBin.GetCount(); k++ )
|
|
|
|
{
|
|
|
|
if( loBin[k].fVtx == hi )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we find it, increment it's count,
|
|
|
|
// else add it.
|
|
|
|
if( k < loBin.GetCount() )
|
|
|
|
{
|
|
|
|
loBin[k].fCount++;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
EdgeBin* b = loBin.Push();
|
|
|
|
b->fVtx = hi;
|
|
|
|
b->fCount = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// For each bucket in the LUT,
|
|
|
|
for( i = 0; i < maxVtxIdx+1; i++ )
|
|
|
|
{
|
|
|
|
hsTArray<EdgeBin>& loBin = bins[i];
|
|
|
|
// For each higher index
|
|
|
|
int j;
|
|
|
|
for( j = 0; j < loBin.GetCount(); j++ )
|
|
|
|
{
|
|
|
|
// If the count is one, it's an edge, so set the edge bit for both indices (hi and lo)
|
|
|
|
if( 1 == loBin[j].fCount )
|
|
|
|
{
|
|
|
|
edgeVertBits.SetBit(i);
|
|
|
|
edgeVertBits.SetBit(loBin[j].fVtx);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Now translate the bitvector to a list of indices.
|
|
|
|
for( i = 0; i < maxVtxIdx+1; i++ )
|
|
|
|
{
|
|
|
|
if( edgeVertBits.IsBitSet(i) )
|
|
|
|
edgeVerts.Append(i);
|
|
|
|
}
|
|
|
|
delete [] bins;
|
|
|
|
}
|
|
|
|
|
|
|
|
void plAvMeshSmooth::FindEdges(hsTArray<XfmSpan>& spans, hsTArray<UInt16>* edgeVerts)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
for( i = 0; i < spans.GetCount(); i++ )
|
|
|
|
{
|
|
|
|
fAccGeom.AccessSpanFromGeometrySpan(spans[i].fAccSpan, spans[i].fSpan);
|
|
|
|
if( !spans[i].fAccSpan.HasAccessTri() )
|
|
|
|
continue;
|
|
|
|
|
|
|
|
plAccessTriSpan& triSpan = spans[i].fAccSpan.AccessTri();
|
|
|
|
|
|
|
|
UInt32 nTris = triSpan.TriCount();
|
|
|
|
UInt16* idxList = triSpan.fTris;
|
|
|
|
UInt32 maxVertIdx = triSpan.VertCount()-1;
|
|
|
|
|
|
|
|
FindEdges(maxVertIdx, nTris, idxList, edgeVerts[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// A little note about why we need to pass in so much to do this.
|
|
|
|
// If the input geometryspans were in local space (ForceLocal), then
|
|
|
|
// all we would need to do is ignore any transforms they might have,
|
|
|
|
// and life is grand.
|
|
|
|
// But for reasons I don't pretend to understand, we can't do that, so
|
|
|
|
// here, to smooth the delta meshes, we transform both them and the base "snap-to"
|
|
|
|
// meshes into their respective local spaces, and then look for matches. This works
|
|
|
|
// because the base and delta meshes are constrained, not to be coincident in world space,
|
|
|
|
// but to be coincident in the local space relative to Max pivot.
|
|
|
|
// The funny painful thing is that later, when we go to use these smoothed delta meshes,
|
|
|
|
// again we need to coerce them into a neutral space. At that time, we'll use the
|
|
|
|
// morph target mesh's local space. Whatever.
|
|
|
|
void plAvMeshSmooth::Smooth(hsTArray<XfmSpan>& srcSpans, hsTArray<XfmSpan>& dstSpans)
|
|
|
|
{
|
|
|
|
hsTArray<UInt16>* dstEdgeVerts = TRACKED_NEW hsTArray<UInt16>[dstSpans.GetCount()];
|
|
|
|
FindEdges(dstSpans, dstEdgeVerts);
|
|
|
|
|
|
|
|
hsTArray<UInt16>* srcEdgeVerts = TRACKED_NEW hsTArray<UInt16>[srcSpans.GetCount()];
|
|
|
|
FindEdges(srcSpans, srcEdgeVerts);
|
|
|
|
|
|
|
|
int i;
|
|
|
|
for( i = 0; i < dstSpans.GetCount(); i++ )
|
|
|
|
{
|
|
|
|
plAccessTriSpan& dstTriSpan = dstSpans[i].fAccSpan.AccessTri();
|
|
|
|
|
|
|
|
int j;
|
|
|
|
for( j = 0; j < dstEdgeVerts[i].GetCount(); j++ )
|
|
|
|
{
|
|
|
|
|
|
|
|
hsPoint3 dstPos = IPositionToNeutral(dstSpans[i], dstEdgeVerts[i][j]);
|
|
|
|
hsVector3 dstNorm = INormalToNeutral(dstSpans[i], dstEdgeVerts[i][j]);
|
|
|
|
hsColorRGBA dstDiff;
|
|
|
|
if( dstTriSpan.HasDiffuse() )
|
|
|
|
dstDiff = dstTriSpan.DiffuseRGBA(dstEdgeVerts[i][j]);
|
|
|
|
else
|
|
|
|
dstDiff.Set(1.f, 1.f, 1.f, 1.f);
|
|
|
|
|
|
|
|
hsScalar maxDot = fMinNormDot;
|
|
|
|
|
|
|
|
hsPoint3 smoothPos = dstPos;
|
|
|
|
hsVector3 smoothNorm = dstNorm;
|
|
|
|
hsColorRGBA smoothDiff = dstDiff;
|
|
|
|
|
|
|
|
int k;
|
|
|
|
for( k = 0; k < srcSpans.GetCount(); k++ )
|
|
|
|
{
|
|
|
|
int m;
|
|
|
|
for( m = 0; m < srcEdgeVerts[k].GetCount(); m++ )
|
|
|
|
{
|
|
|
|
hsPoint3 srcPos = IPositionToNeutral(srcSpans[k], srcEdgeVerts[k][m]);
|
|
|
|
hsVector3 srcNorm = INormalToNeutral(srcSpans[k], srcEdgeVerts[k][m]);
|
|
|
|
|
|
|
|
hsScalar dist = hsVector3(&dstPos, &srcPos).MagnitudeSquared();
|
|
|
|
if( dist <= fDistTolSq )
|
|
|
|
{
|
|
|
|
smoothPos = srcPos;
|
|
|
|
|
|
|
|
hsScalar currDot = srcNorm.InnerProduct(dstNorm);
|
|
|
|
if( currDot > maxDot )
|
|
|
|
{
|
|
|
|
maxDot = currDot;
|
|
|
|
smoothNorm = srcNorm;
|
|
|
|
if( srcSpans[k].fAccSpan.AccessTri().HasDiffuse() )
|
|
|
|
smoothDiff = srcSpans[k].fAccSpan.AccessTri().DiffuseRGBA(srcEdgeVerts[k][m]);
|
|
|
|
else
|
|
|
|
smoothDiff = dstDiff;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( fFlags & kSmoothPos )
|
|
|
|
dstTriSpan.Position(dstEdgeVerts[i][j]) = IPositionToSpan(dstSpans[i], smoothPos);
|
|
|
|
if( fFlags & kSmoothNorm )
|
|
|
|
dstTriSpan.Normal(dstEdgeVerts[i][j]) = INormalToSpan(dstSpans[i], smoothNorm);
|
|
|
|
if( (fFlags & kSmoothDiffuse) && dstTriSpan.HasDiffuse() )
|
|
|
|
dstTriSpan.Diffuse32(dstEdgeVerts[i][j]) = smoothDiff.ToARGB32();
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
delete [] srcEdgeVerts;
|
|
|
|
delete [] dstEdgeVerts;
|
|
|
|
}
|
|
|
|
|
|
|
|
hsPoint3 plAvMeshSmooth::IPositionToNeutral(XfmSpan& span, int i) const
|
|
|
|
{
|
|
|
|
return span.fSpanToNeutral * span.fAccSpan.AccessTri().Position(i);
|
|
|
|
}
|
|
|
|
|
|
|
|
hsVector3 plAvMeshSmooth::INormalToNeutral(XfmSpan& span, int i) const
|
|
|
|
{
|
|
|
|
hsVector3 ret = span.fNormSpanToNeutral * span.fAccSpan.AccessTri().Normal(i);
|
|
|
|
hsFastMath::Normalize(ret);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
hsPoint3 plAvMeshSmooth::IPositionToSpan(XfmSpan& span, const hsPoint3& wPos) const
|
|
|
|
{
|
|
|
|
return span.fNeutralToSpan * wPos;
|
|
|
|
}
|
|
|
|
|
|
|
|
hsVector3 plAvMeshSmooth::INormalToSpan(XfmSpan& span, const hsVector3& wNorm) const
|
|
|
|
{
|
|
|
|
hsVector3 ret = span.fNormNeutralToSpan * wNorm;
|
|
|
|
hsFastMath::Normalize(ret);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
void plAvMeshSmooth::SetAngle(hsScalar degs)
|
|
|
|
{
|
|
|
|
fMinNormDot = hsCosine(hsScalarDegToRad(degs));
|
|
|
|
}
|
|
|
|
|
|
|
|
hsScalar plAvMeshSmooth::GetAngle() const
|
|
|
|
{
|
|
|
|
return hsScalarRadToDeg(hsACosine(fMinNormDot));
|
|
|
|
}
|
|
|
|
|
|
|
|
void plAvMeshSmooth::SetDistTol(hsScalar dist)
|
|
|
|
{
|
|
|
|
fDistTolSq = dist * dist;
|
|
|
|
}
|
|
|
|
|
|
|
|
hsScalar plAvMeshSmooth::GetDistTol() const
|
|
|
|
{
|
|
|
|
return hsSquareRoot(fDistTolSq);
|
|
|
|
}
|