This operator takes a file as an argument and builds a cubemap from it.
Valid options are to supply the output from Plasma's
Graphics.Renderer.GrabCubeMap console command. The operator will find
the other five files and generate a cubemap with the faces saved by
Plasma. Otherwise, any arbitrary image can be supplied. If the filenames
do not fit the expected format, any missing faces will be replaced by
the face specified in the file selector. This will generally result in a
cubemap with six identical faces.
Previously, we allowed OpenGL to generate all of the mip levels for us
in a mipmap. This was pretty doggone fast and worked reasonably well.
However, with cube maps, we will need to use images that are not always
backed in Blender... this is because Blender stores cube maps as one
single image instead of one image per face. So, we need to be able to
generate those mip levels, preferably without touching Blender's
`Image.pixels`, which is slower than Christmas...
Also of note... `Image.gl_load()` will actually scale the iamge to a POT
when Blender is using OpenGL ES... but not on other platforms. So, now,
we just ask Blender to load the image and deal with the POT-izing later.
The con here is that the pure python implementation of the image scaling
function is SLOOOOOOOW. We're talking ~40 seconds to process a 1024x1024
mipmap. No one should be using the reference implementation, however,
and the C++ implementation shows no noticable slowdown over the OpenGL
code.
Whew.
This sound emitter modifier is almost as fully functional as PlasmaMAX's various sound emitter components. Additional functionality was added to C korlib so that artists can specify OGG Vorbis sound files. If korlib is not compiled, only WAVE sounds can be utilized in Korman. This fixes some of the more fiddly bugs related to exporting to CWE that were seen in PyPRP.
Sound nodes to be implemented...